Streaming Queries over
* Streaming Data

Lukasz Golab
CS856
University of Waterloo

:.L Table of Contents

= The Data Stream Model
= Continuous (Streaming) Queries

= Streaming Queries over Streaming Data
= State Modules (SteMs)
= Eddies (adaptive query processing)
= PSoup

Lukasz Golab ~ CS856 2

i Goals of this Talk

= Data Stream Model for on-line
information sources

= Querying data streams via continuous
queries

= PSoup solves the problem of continuous
queries over data streams

Lukasz Golab ~ CS856 3

:.L The Data Stream Model

= Definition: real-time, continuous sequence of
items

= Applications: on-line financial tickers, sensor
networks, Internet traffic monitoring

= Properties: real-time, high arrival rate, infinite
length, ordering

= High-level view: stream of relational tuples

Lukasz Golab ~ CS856 4

i Why the Data Stream Model?

= Data access: push, not pull (consider
pervasive computing)

= Scale: collection of streaming data
sources vs. relational tables/XML

= Information freshness: data on the Web
is changing, new data replace old data

Lukasz Golab ~ CS856 5

Continuous (Streaming)

:.L Queries

= Run persistently over a period of time

= Return new results as new data items
arrive

= Predefined or ad-hoc
= Landmark or sliding window

Lukasz Golab ~ CS856

i Why Continuous Queries?

= Fit the data stream model

= "What is the average salary in the Toy
department?” vs. "What was the
average temperature in room x over the
past 24 hours?”

= Note: sliding window queries over
recent history likely to be most popular

Lukasz Golab ~ CS856 7

Streaming Queries over
Streaming Data

= System Requirements
= Scalability
= Adaptivity (e.g. disconnected operation)
= Performance

= Memory Constraints
= With finite memory, can do og .5 (R)
= But cant do 0y ,_5, (R X S)

Lukasz Golab ~ CS856

Streaming Queries over
Streaming Data (2)

= Solution
= State Modules (SteMs)
» Eddies (adaptive query processing)
= PSoup

Lukasz Golab ~ CS856 9

i Background—SteMs

= Used for interactive query processing,
e.g. data sharing among joins

= One SteM for each relation

= Can insert, delete, index etc like a
relational table + can probe

= E.g. MR.a, s.b0R.a<5 (R > R.a>S.b S)

Lukasz Golab ~ CS856 10

i SteMs example

R.a S.b
2 ->Tpa sp(RP< 25 S) 2
3 ->Tpass(RP<3554S) 3
4 > Mg sp(RP< 455 S) 4
9 5
7 0

Lukasz Golab ~ CS856 11

:.L Background—Eddies

= Execute operators in different order
throughout the lifetime of the query

= Choose a plan that is cheapest at any
given time

= Tuple routing policies
me.g. R>PIS)DITvs. R (SPAT)

Lukasz Golab ~ CS856 12

Why adaptivity?

= 3 things influence the cost of a plan
»« Changing input (stream) rates
» Changing operator processing times (e.g.
memory/resource sharing)

» Changing selectivities—e.g.
= FACULTY table with a clustered index on AGE
=« Want SELECT NAME FROM FACULTY

WHERE SALARY>100000

= Selectivity changes from 0 to 1!

Lukasz Golab ~ CS856 13

i PSoup

= Insight: treat queries like tuples
= Implementation:
= One Query SteM, many Data SteMs
= Results Structure

= Eddies—adaptive ordering of data-query
joins

Lukasz Golab ~ CS856 14

Processing a New Query

i Processing New Data

Data SteM

I I
Data SteM _ QuerySteM |
ey Sl 0 TRaTRo]l 0] Predcate | Data SteM ! S
m‘ reqia_: a4l D[QRa<s | 1D [Ra] Rb] match| a[a=[ala
5 REEZ'A:D;M CARRER T | Rad D Rb=1 : N | [® -
Z | DRo CAENR N 21 A -TRD?b—s : T2 match | § 1: T
23 | Ra=4 AND RLb=3 600 et AL o B M i 38 184 !
RN [2 [Res=4 Mo Rb>=3)] | 5[0 8 | e -
IgELECT o I 52| 8| 4 L
@ il 9 i ! RESULTS
:wmu Rg<=4 0 RbPe : } Moyl
| mmu#' | |
! @ I \
! |

Lukasz Golab ~ CS856 15

| | I
Query StaM Data SteM | | Query SteM 1
Cu
D] Predicale 10 [Ra[Rb]! Lg Rf R:b | maigh | 1D | Predicats J Fl] E\”i\ R
20 <R a<=5 a5 4|3 | I EaEnl =0 <R.a<=6 1 m
21 |Rasdmorb=a PUag[7 [3 |i o ! 21 | Mam4 ANDRE=3 ¢m'! 1, [
22 TRb>4 5|38 } 50|3| & } o i ..:i —
23 | Ro=h AND D=3 EEEN N stjo]aj], = = i [=
= = ST malch | 23 | Ra=4 ANDRE=3 i
EALTSELGESI . B B B : | s m [RasdmoRbd iy e IREEEEE
w ‘@ w !
@ | < | i RESULTS
| @@m | | STRUCTURE
| EIEIEEN !
Lukasz Golab ~ CS856 16

i PSoup—Notes

= Results structure and indices stored in
main memory

= Supports sliding window queries (tuples
have timestamps)

= Join processing is more complicated
(results structure is bigger)

= Supports disconnected operation—user
can get the data at any time

Lukasz Golab ~ CS856 17

:.L Summary

= PSoup meets all system requirements:
= Scalability—probing the Query SteM essentially
executes all queries at once

= Adaptivity—Eddies + Results Structure. Note that
new queries may access old data

= Performance—indices on query predicates, tables
(in this case stream excerpts) and columns in the
Results Structure

= Memory Constraints—Instead of trying to do
arbitrary queries, focus on windowed joins

Lukasz Golab ~ CS856 18

