Goals of this Talk

- Data Stream Model for on-line information sources
- Querying data streams via continuous queries
- PSoup solves the problem of continuous queries over data streams

The Data Stream Model

- Definition: real-time, continuous sequence of items
- Applications: on-line financial tickers, sensor networks, Internet traffic monitoring
- Properties: real-time, high arrival rate, infinite length, ordering
- High-level view: stream of relational tuples
Why the Data Stream Model?

- Data access: push, not pull (consider pervasive computing)
- Scale: collection of streaming data sources vs. relational tables/XML
- Information freshness: data on the Web is changing, new data replace old data

Continuous (Streaming) Queries

- Run persistently over a period of time
- Return new results as new data items arrive
- Predefined or ad-hoc
- Landmark or sliding window

Why Continuous Queries?

- Fit the data stream model
- “What is the average salary in the Toy department?” vs. “What was the average temperature in room x over the past 24 hours?”
- Note: sliding window queries over recent history likely to be most popular

Streaming Queries over Streaming Data

- System Requirements
 - Scalability
 - Adaptivity (e.g. disconnected operation)
 - Performance
 - Memory Constraints
 - With finite memory, can do \(\sigma_{R.a < 5} (R) \)
 - But can’t do \(\sigma_{R.a = S.b} (R \times S) \)
Streaming Queries over Streaming Data (2)

- Solution
 - State Modules (SteMs)
 - Eddies (adaptive query processing)
 - PSoup

Background—SteMs

- Used for interactive query processing, e.g. data sharing among joins
- One SteM for each relation
- Can insert, delete, index etc like a relational table + can probe
- E.g. \(\pi_{a, b} R \sigma_{a < 5} (R \bowtie S) \)

SteMs example

<table>
<thead>
<tr>
<th>R.a</th>
<th>S.b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(\pi_{a, b} R \bowtie_2 S.b S)</td>
</tr>
<tr>
<td>3</td>
<td>(\pi_{a, b} R \bowtie_3 S.b S)</td>
</tr>
<tr>
<td>4</td>
<td>(\pi_{a, b} R \bowtie_4 S.b S)</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

Background—Eddies

- Execute operators in different order throughout the lifetime of the query
- Choose a plan that is cheapest at any given time
- Tuple routing policies
- E.g. \(R \bowtie S \bowtie T \) vs. \(R \bowtie S \bowtie T \)
Why adaptivity?

- 3 things influence the cost of a plan
 - Changing input (stream) rates
 - Changing operator processing times (e.g. memory/resource sharing)
 - Changing selectivities—e.g.
 - FACULTY table with a clustered index on AGE
 - Want SELECT NAME FROM FACULTY
 WHERE SALARY > 100000
 - Selectivity changes from 0 to 1!

PSoup

- Insight: treat queries like tuples
- Implementation:
 - One Query SteM, many Data SteMs
 - Results Structure
 - Eddies—adaptive ordering of data-query joins

Processing a New Query

Processing New Data
PSoup—Notes

- Results structure and indices stored in main memory
- Supports sliding window queries (tuples have timestamps)
- Join processing is more complicated (results structure is bigger)
- Supports disconnected operation—user can get the data at any time

Summary

- PSoup meets all system requirements:
 - Scalability—probing the Query SteM essentially executes all queries at once
 - Adaptivity—Eddies + Results Structure. Note that new queries may access old data
 - Performance—indices on query predicates, tables (in this case stream excerpts) and columns in the Results Structure
 - Memory Constraints—Instead of trying to do arbitrary queries, focus on windowed joins