Streaming Queries over Streaming Data

Lukasz Golab CS856 University of Waterloo

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Goals of this Talk

- Data Stream Model for on-line information sources
- Querying data streams via continuous queries
- PSoup solves the problem of continuous queries over data streams

The Data Stream Model

- Definition: real-time, continuous sequence of items
- Applications: on-line financial tickers, sensor networks, Internet traffic monitoring
- Properties: real-time, high arrival rate, infinite length, ordering
- High-level view: stream of relational tuples

3

 Streaming Queries over Streaming Data (2) Solution State Modules (SteMs) Eddies (adaptive query processing) PSoup 	 Background—SteMs Used for interactive query processing, e.g. data sharing among joins One SteM for each relation Can insert, delete, index etc like a relational table + can probe E.g. Π_{R.a, S.b}σ_{R.a<5} (R ▷< _{R.a>S.b} S)
Lukasz Golab CS856 9	Lukasz Golab CS856 10
R.aS.b2 $-> \Pi_{R.a, S.b}(R \triangleright \triangleleft _{2>S.b} S)$ 23 $-> \Pi_{R.a, S.b}(R \triangleright \triangleleft _{3>S.b} S)$ 34 $-> \Pi_{R.a, S.b}(R \triangleright \triangleleft _{4>S.b} S)$ 4970	 Background—Eddies Execute operators in different order throughout the lifetime of the query Choose a plan that is cheapest at any given time Tuple routing policies e.g. (R ▷⊲ S) ▷⊲ T vs. R ▷⊲ (S ▷⊲ T)
Lukasz Golab CS856 11	Lukasz Golab CS856 12

