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i Goals of this Talk

= Data Stream Model for on-line
information sources

= Querying data streams via continuous
queries

= PSoup solves the problem of continuous
queries over data streams
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:.L The Data Stream Model

= Definition: real-time, continuous sequence of
items

= Applications: on-line financial tickers, sensor
networks, Internet traffic monitoring

= Properties: real-time, high arrival rate, infinite
length, ordering

= High-level view: stream of relational tuples
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i Why the Data Stream Model?

= Data access: push, not pull (consider
pervasive computing)

= Scale: collection of streaming data
sources vs. relational tables/XML

= Information freshness: data on the Web
is changing, new data replace old data
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Continuous (Streaming)

:.L Queries

= Run persistently over a period of time

= Return new results as new data items
arrive

= Predefined or ad-hoc
= Landmark or sliding window
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i Why Continuous Queries?

= Fit the data stream model

= "What is the average salary in the Toy
department?” vs. "What was the
average temperature in room x over the
past 24 hours?”

= Note: sliding window queries over
recent history likely to be most popular
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Streaming Queries over
Streaming Data

= System Requirements
= Scalability
= Adaptivity (e.g. disconnected operation)
= Performance

= Memory Constraints
= With finite memory, can do og .5 (R)
= But cant do 0y ,_5, (R X S)
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Streaming Queries over
Streaming Data (2)

= Solution
= State Modules (SteMs)
» Eddies (adaptive query processing)
= PSoup
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i Background—SteMs

= Used for interactive query processing,
e.g. data sharing among joins

= One SteM for each relation

= Can insert, delete, index etc like a
relational table + can probe

= E.g. MR.a, s.b0R.a<5 (R > R.a>S.b S)
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i SteMs example

R.a S.b
2 ->Tpa sp(RP< 25 S) 2
3 ->Tpass(RP<3554S) 3
4 > Mg sp(RP< 455 S) 4
9 5
7 0
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:.L Background—Eddies

= Execute operators in different order
throughout the lifetime of the query

= Choose a plan that is cheapest at any
given time

= Tuple routing policies
me.g. R>PIS)DITvs. R (SPAT)
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Why adaptivity?

= 3 things influence the cost of a plan
»« Changing input (stream) rates
» Changing operator processing times (e.g.
memory/resource sharing)

» Changing selectivities—e.g.
= FACULTY table with a clustered index on AGE
=« Want SELECT NAME FROM FACULTY

WHERE SALARY>100000

= Selectivity changes from 0 to 1!
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i PSoup

= Insight: treat queries like tuples
= Implementation:
= One Query SteM, many Data SteMs
= Results Structure

= Eddies—adaptive ordering of data-query
joins
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Processing a New Query

i Processing New Data

Data SteM
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i PSoup—Notes

= Results structure and indices stored in
main memory

= Supports sliding window queries (tuples
have timestamps)

= Join processing is more complicated
(results structure is bigger)

= Supports disconnected operation—user
can get the data at any time
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:.L Summary

= PSoup meets all system requirements:
= Scalability—probing the Query SteM essentially
executes all queries at once

= Adaptivity—Eddies + Results Structure. Note that
new queries may access old data

= Performance—indices on query predicates, tables
(in this case stream excerpts) and columns in the
Results Structure

= Memory Constraints—Instead of trying to do
arbitrary queries, focus on windowed joins
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