
Streaming Queries over
Streaming Data

Lukasz Golab
CS856

University of Waterloo

Lukasz Golab CS856 2

Table of Contents

! The Data Stream Model
! Continuous (Streaming) Queries
! Streaming Queries over Streaming Data

! State Modules (SteMs)
! Eddies (adaptive query processing)
! PSoup

Lukasz Golab CS856 3

Goals of this Talk

! Data Stream Model for on-line
information sources

! Querying data streams via continuous
queries

! PSoup solves the problem of continuous
queries over data streams

Lukasz Golab CS856 4

The Data Stream Model

! Definition: real-time, continuous sequence of
items

! Applications: on-line financial tickers, sensor
networks, Internet traffic monitoring

! Properties: real-time, high arrival rate, infinite
length, ordering

! High-level view: stream of relational tuples

Lukasz Golab CS856 5

Why the Data Stream Model?

! Data access: push, not pull (consider
pervasive computing)

! Scale: collection of streaming data
sources vs. relational tables/XML

! Information freshness: data on the Web
is changing, new data replace old data

Lukasz Golab CS856 6

Continuous (Streaming)
Queries

! Run persistently over a period of time
! Return new results as new data items

arrive
! Predefined or ad-hoc
! Landmark or sliding window

Lukasz Golab CS856 7

Why Continuous Queries?

! Fit the data stream model
! “What is the average salary in the Toy

department?” vs. “What was the
average temperature in room x over the
past 24 hours?”

! Note: sliding window queries over
recent history likely to be most popular

Lukasz Golab CS856 8

Streaming Queries over
Streaming Data

! System Requirements
! Scalability
! Adaptivity (e.g. disconnected operation)
! Performance
! Memory Constraints

! With finite memory, can do σR.a<5 (R)
! But can’t do σR.a=S.b (R x S)

Lukasz Golab CS856 9

Streaming Queries over
Streaming Data (2)

! Solution
! State Modules (SteMs)
! Eddies (adaptive query processing)
! PSoup

Lukasz Golab CS856 10

Background—SteMs

! Used for interactive query processing,
e.g. data sharing among joins

! One SteM for each relation
! Can insert, delete, index etc like a

relational table + can probe
! E.g. πR.a, S.bσR.a<5 (R !" R.a>S.b S)

Lukasz Golab CS856 11

SteMs example

R.a S.b
2 -> πR.a, S.b(R !" 2>S.b S) 2
3 -> πR.a, S.b(R !" 3>S.b S) 3
4 -> πR.a, S.b(R !" 4>S.b S) 4
9 5
7 0

Lukasz Golab CS856 12

Background—Eddies

! Execute operators in different order
throughout the lifetime of the query

! Choose a plan that is cheapest at any
given time

! Tuple routing policies
! e.g. (R !" S) !" T vs. R !" (S !" T)

Lukasz Golab CS856 13

Why adaptivity?

! 3 things influence the cost of a plan
! Changing input (stream) rates
! Changing operator processing times (e.g.

memory/resource sharing)
! Changing selectivities—e.g.

! FACULTY table with a clustered index on AGE
! Want SELECT NAME FROM FACULTY

WHERE SALARY>100000
! Selectivity changes from 0 to 1!

Lukasz Golab CS856 14

PSoup

! Insight: treat queries like tuples
! Implementation:

! One Query SteM, many Data SteMs
! Results Structure
! Eddies—adaptive ordering of data-query

joins

Lukasz Golab CS856 15

Processing a New Query

Lukasz Golab CS856 16

Processing New Data

Lukasz Golab CS856 17

PSoup—Notes

! Results structure and indices stored in
main memory

! Supports sliding window queries (tuples
have timestamps)

! Join processing is more complicated
(results structure is bigger)

! Supports disconnected operation—user
can get the data at any time

Lukasz Golab CS856 18

Summary

! PSoup meets all system requirements:
! Scalability—probing the Query SteM essentially

executes all queries at once
! Adaptivity—Eddies + Results Structure. Note that

new queries may access old data
! Performance—indices on query predicates, tables

(in this case stream excerpts) and columns in the
Results Structure

! Memory Constraints—Instead of trying to do
arbitrary queries, focus on windowed joins

