
1

Caching Strategies for Data-
Intensive Web Sites: A Critique

Presented by:

Aziz Kara

K. Yagoub, D.Florescu, V. Issarny, P. Valdez

Outline

n Overview of problems with the paper
n Some suggested improvements
n General comments about paper
n Distributed Discussion

2

Assumptions

n Everyone has read the paper…

Problems with the paper

n Authors don’t address bandwidth used within
site infrastructure, or more importantly,
bandwidth used to send page to user

n All content resides in a database. Many sites
are not of this format, but are still data
intensive

n Authors concentrate on response-time and
give little discussion about system throughput

3

Problems with the paper (cont’d)

n Lack of discussion about read v.s. write data
– Authors only treat the case where a site has read-

only data interactions

n No use of statistical information to
automatically enhance run-time policies
based on access patterns
– Although authors do mention this as an ultimate

goal of the exercise

Problems with the paper (cont’d)

n No distribution in their solution
– Scheduler in their solution is not distributed

therefore can become a bottleneck and a single
point of failure in system

• Especially if scheduler has to repeatedly process
run-time policies

– Cache managers are single-point of failure as well
as potential bottlenecks

• Only link to the repositories, therefore if managers
fail, access to repositories is gone.

4

Problems with the paper (cont’d)

n How flexible to change are the declarative
specification and run-time policies?
– With respect to update mechanisms

• Partially covered
– Migration details

• Not covered

n Does the declarative site specification
paradigm restrict the use of dynamic-layouts
based sites?

• Not covered

Problems with the paper (cont’d)

n DB caching is done in DB
– What are we really saving here?

• Query processing time?
• Query optimization time?

– Still required to fetch results from DB - means
crossing client/server boundary

• Messaging overheads if distributed setup

5

Suggested Improvements

n Caching updates are either push or pull, use
lazy replacement strategy
– Authors’ experiments show that active update

mechanisms contribute non-trivial costs to
response times

– Means first request for object takes a little longer
to process, but subsequent requests are
processed faster

– Refrain from caching objects that are requested
infrequently

Suggested Improvements (cont’d)

n DB caching can sometimes be done in
memory
– e.g. Delayed stock quotes are good for 5 min.

Store query results in application server memory
so that we don’t have to keep going to DB

n Caching static pages with dynamic
references - can be thought of as holes to be
filled in on HTML page
– Only have to evaluate non-cached dynamic

components and assemble page at the HTML
generator

6

Suggested Improvements (cont’d)

n Process requests for static pages in a
different manner that doesn’t require front-
end processing tools described in solution
– Useful if scheduler repeatedly must process run-

time policy
– Useful for pages close to root of site
– Increased load handling capabilities

• e.g. Sept. 11th, 2001

General Comments

n Authors don’t stress importance of site
infrastructure design
– If HTTP requests are served from same machine

as XML/HTML generation, then could have a
bottleneck problem

n Authors don’t survey sites to see how many
are of the form they discuss
– I.e. lack of motivation for problem
– Whats the point of all this caching if your site falls

in this category, but you don’t get high traffic
levels?

7

General Comments (cont’d)

n Authors lack discussion of implementation
details
– No discussion of precisely what happens when an

HTTP request is received
• Does scheduler have data structure representation

of the run-time policy?
– Should XML/HTML repositories be physical

storage or main-memory storage? Advantages?
Disadvantages?

Distributed Discussion Time

Thank you for listening patiently.

