Crawling the Hidden Web

by S. Raghavan & H.G. Molina

Presenter: Jack Ng
Oct 30, 2002

Background Info

- **Hidden Web** - databases whose content is accessible only through search forms

- Why is it important to tap into the hidden Web?
Background Info

According to "The Deep Web: Surfacing Hidden Value", 2001:

- 500 billion documents; 500 times > PIW
- 7500 TB of data; 19 TB for PIW
- grows much faster than the PIW
- High quality, topic-specific information
- 95% is publicly accessible - no fees or subscriptions

Background Info

Challenges faced by crawlers to extract content from the hidden Web:

- Size of hidden Web is enormous!
- Content not reachable by following hypertext links
- "Form-filling" is a human activity

"Training" a crawler is very difficult!!
Background Info

- Authors’ approach to address the challenges:
 - task-specificity
 - human-assistance

- Propose:
 - model of hidden Web crawler
 - model of form page
 - LITE (Layout-based Information Extraction Technique) for content extraction

- Implementation - HiWE (Hidden Web Exposer)
HiWE Data Structures - LVS Table

- Task-specific DB
- Organized by concepts
- Vocabularies for filling out forms

Fuzzy set: membership function assigns 'confidence' to each value

Task: search for game reviews

<table>
<thead>
<tr>
<th>Platform</th>
<th>{Xbox, PS2, GameCube, PC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genre</td>
<td>{action, RPG, strategy, sports}</td>
</tr>
<tr>
<td>Developer</td>
<td>{EA, Sega, Squaresoft, Bioware}</td>
</tr>
</tbody>
</table>

HiWE - Form Processing Strategy

- Given internal form representation:
 \[F = (\{E_1, E_2, \ldots, E_n\}, S, M) \]

- For each infinite domain element, label matching algorithm finds closest match in LVS table and assigns value set to it

- Rank value assignments to ensure quality submission
 - Fuzzy conjunction --> conservative
 - Average
 - Probabilistic --> aggressive

- Submit only if rank is greater than threshold
What is LITE?

- Label extraction *heuristics* based on how page is laid out for *human* viewing

Idea: label is often visually adjacent to widget (e.g., textbox) and obvious to viewer

- Partial layout is sufficient to determine adjacency --> prune unnecessary elements (see Figure 4 in paper)

- Applications in HiWE:
 - form page analysis
 - response page analysis

LITE Application - Form Page Analysis

How LITE heuristics identify label of form element

Label is “Movie Title”
LITE Application - Response Page Analysis

- Based on idea that results must be obvious to viewers
- Prune page to find visually center-most portion & interpret it as results location
- To identify error pages:
 - Search center portion for common error text (e.g., "No results")
 - Compute hash value for center portion
 - Common hash values = error pages

Experimental Results

- Value assignment ranking
 - Fuzzy conj. --> best submission efficiency
 - Average ✓ --> most successful submissions
 - Probabilistic --> poor performance
- LITE outperforms other label extraction techniques; overall 93% accuracy
Thoughts...

- Strength & novelty of solution
 - flexible framework
 - works with non-cooperative DBs
 - crawler has learning capability
 - crawls both PIW and hidden Web
 - 'mines' visual layout info for semantics

Thoughts...

- *Implementation* limitations
 - LVS table - how to handle semantically ambiguous labels?
 - what about image labels?
 - doesn't consider relationships among elements when assigning values
 - 'all-or-none' form submission policy
Thoughts...

- Presentation of paper
 - easy to follow and understand
 - right level of details
 - goals & pre-conditions clearly defined

- overall, a good paper!