
Distributed DBMS 1

Outline
Introduction
Distributed DBMS Architecture
Distributed Database Design
Distributed Query Processing
Distributed Concurrency Control

Transaction Concepts & Models
Serializability
Distributed Concurrency Control Protocols

Distributed Reliability Protocols

Distributed DBMS 2

Transaction
A transaction is a collection of actions that make consistent
transformations of system states while preserving system
consistency.

concurrency transparency
failure transparency

Database in a
consistent
state

Database may be
temporarily in an
inconsistent state
during execution

Begin
Transaction

End
Transaction

Execution of
Transaction

Database in a
consistent
state

Distributed DBMS 3

Example Database

Consider an airline reservation example with the
relations:

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)
CUST(CNAME, ADDR, BAL)
FC(FNO, DATE, CNAME,SPECIAL)

Distributed DBMS 4

Example Transaction

Begin_transaction Reservation
begin

input(flight_no, date, customer_name);
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight_no, date, customer_name, null);

output(“reservation completed”)
end . {Reservation}

Distributed DBMS 5

Termination of Transactions
Begin_transaction Reservation
begin

input(flight_no, date, customer_name);
EXEC SQL SELECT STSOLD,CAP

INTO temp1,temp2
FROM FLIGHT
WHERE FNO = flight_no AND DATE = date;

if temp1 = temp2 then
output(“no free seats”);
Abort

else
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight_no, date, customer_name, null);

Commit
output(“reservation completed”)

endif
end . {Reservation}

Distributed DBMS 6

Properties of Transactions
ATOMICITY

all or nothing

CONSISTENCY
no violation of integrity constraints

ISOLATION
concurrent changes invisible È serializable

DURABILITY
committed updates persist

Distributed DBMS 7

Transactions Provide…

Atomic and reliable execution in the presence of
failures

Correct execution in the presence of multiple
user accesses

Correct management of replicas (if they support
it)

Distributed DBMS 8

Transaction Processing Issues

Transaction structure (usually called transaction
model)

Flat (simple), nested

Internal database consistency
Semantic data control (integrity enforcement) algorithms

Reliability protocols
Atomicity & Durability

Local recovery protocols

Global commit protocols

Distributed DBMS 9

Transaction Processing Issues

Concurrency control algorithms
How to synchronize concurrent transaction executions
(correctness criterion)

Intra-transaction consistency, Isolation

Replica control protocols
How to control the mutual consistency of replicated data

One copy equivalence and ROWA

Distributed DBMS 10

Architecture Revisited

Scheduling/
Descheduling
Requests

Transaction Manager
(TM)

Distributed
Execution Monitor

With other
SCs

With other
TMs

Begin_transaction,
Read, Write,
Commit, Abort

To data
processor

Results

Scheduler
(SC)

Distributed DBMS 11

Centralized Transaction
Execution

Begin_Transaction,
Read, Write, Abort, EOT

Results &
User Notifications

Scheduled
Operations Results

Results

…

Read, Write,
Abort, EOT

User
Application

User
Application

Transaction
Manager

(TM)

Scheduler
(SC)

Recovery
Manager

(RM)

Distributed DBMS 12

Distributed Transaction
Execution

Begin_transaction,
Read, Write, EOT,
Abort

User application

Results &
User notifications

Read, Write,
EOT, Abort

TM

SC

RM

SC

RM

TM

Local
Recovery
Protocol

Distributed
Concurrency Control

Protocol

Replica Control
Protocol

Distributed
Transaction Execution

Model

Distributed DBMS 13

Concurrency Control
The problem of synchronizing concurrent
transactions such that the consistency of the
database is maintained while, at the same time,
maximum degree of concurrency is achieved.
Anomalies:

Lost updates
The effects of some transactions are not reflected on the
database.

Inconsistent retrievals
A transaction, if it reads the same data item more than
once, should always read the same value.

Distributed DBMS 14

Execution Schedule (or History)
An order in which the operations of a set of
transactions are executed.
A schedule (history) can be defined as a partial
order over the operations of a set of transactions.

H1={W2(x),R1(x), R3(x),W1(x),C1,W2(y),R3(y),R2(z),C2,R3(z),C3}

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

Distributed DBMS 15

Serial History
All the actions of a transaction occur
consecutively.
No interleaving of transaction operations.
If each transaction is consistent (obeys integrity
rules), then the database is guaranteed to be
consistent at the end of executing a serial history.

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

Hs={W2(x),W2(y),R2(z),C2,R1(x),W1(x),C1,R3(x),R3(y),R3(z),C3}

Distributed DBMS 16

Serializable History
Transactions execute concurrently, but the net
effect of the resulting history upon the database is
equivalent to some serial history.
Equivalent with respect to what?

Conflict equivalence: the relative order of execution of the
conflicting operations belonging to unaborted transactions in
two histories are the same.
Conflicting operations: two incompatible operations (e.g.,
Read and Write) conflict if they both access the same data
item.

Incompatible operations of each transaction is assumed to
conflict; do not change their execution orders.
If two operations from two different transactions conflict,
the corresponding transactions are also said to conflict.

Distributed DBMS 17

Serializability in Distributed
DBMS

Somewhat more involved. Two histories have to
be considered:

local histories
global history

For global transactions (i.e., global history) to be
serializable, two conditions are necessary:

Each local history should be serializable.
Two conflicting operations should be in the same relative
order in all of the local histories where they appear together.

Distributed DBMS 18

Global Non-serializability

The following two local histories are individually
serializable (in fact serial), but the two transactions are
not globally serializable.

T1: Read(x) T2: Read(x)
x ←x+5 x ←x∗15
Write(x) Write(x)
Commit Commit

LH1={R1(x),W1(x),C1,R2(x),W2(x),C2}

LH2={R2(x),W2(x),C2,R1(x),W1(x),C1}

Distributed DBMS 19

Concurrency Control
Algorithms

Pessimistic
Two-Phase Locking-based (2PL)

Centralized (primary site) 2PL
Primary copy 2PL
Distributed 2PL

Timestamp Ordering (TO)
Basic TO
Multiversion TO
Conservative TO

Hybrid

Optimistic
Locking-based
Timestamp ordering-based

Distributed DBMS 20

Locking-Based Algorithms
Transactions indicate their intentions by requesting
locks from the scheduler (called lock manager).
Locks are either read lock (rl) [also called shared
lock] or write lock (wl) [also called exclusive lock]
Read locks and write locks conflict (because Read
and Write operations are incompatible

rl wl
rl yes no
wl no no

Locking works nicely to allow concurrent processing
of transactions.

Distributed DBMS 21

Two-Phase Locking (2PL)
A Transaction locks an object before using it.
When an object is locked by another transaction,
the requesting transaction must wait.
When a transaction releases a lock, it may not
request another lock.

Obtain lock

Release lock

Lock point

Phase 1 Phase 2

BEGIN END

N
o.

 o
f l

oc
ks

Distributed DBMS 22

Strict 2PL
Hold locks until the end.

Obtain lock

Release lock

BEGIN END
Transaction
durationperiod of

data item
use

Distributed DBMS 23

Centralized 2PL
There is only one 2PL scheduler in the distributed system.
Lock requests are issued to the central scheduler.

Data Processors at
participating sites Coordinating TM Central Site LM

Lock Request

Lock Granted

Operation

End of Operation

Release Locks

Distributed DBMS 24

Distributed 2PL
2PL schedulers are placed at each site. Each
scheduler handles lock requests for data at that
site.
A transaction may read any of the replicated
copies of item x, by obtaining a read lock on one
of the copies of x. Writing into x requires
obtaining write locks for all copies of x.

Distributed DBMS 25

Distributed 2PL Execution
Coordinating TM Participating LMs Participating DPs

Lock Request

Operation

End of Operation

Release Locks

Distributed DBMS 26

Timestamp Ordering
Transaction (Ti) is assigned a globally unique timestamp
ts(Ti).
Transaction manager attaches the timestamp to all
operations issued by the transaction.
Each data item is assigned a write timestamp (wts) and a
read timestamp (rts):

rts(x) = largest timestamp of any read on x
wts(x) = largest timestamp of any read on x

Conflicting operations are resolved by timestamp order.
Basic T/O:
for Ri(x) for Wi(x)
if ts(Ti) < wts(x) if ts(Ti) < rts(x) and ts(Ti) < wts(x)
then reject Ri(x) then reject Wi(x)
else accept Ri(x) else accept Wi(x)
rts(x) ← ts(Ti) wts(x) ← ts(Ti)

Distributed DBMS 27

Multiversion Timestamp
Ordering

Do not modify the values in the database, create
new values.

A Ri(x) is translated into a read on one version of
x.

Find a version of x (say xv) such that ts(xv) is the largest
timestamp less than ts(Ti).

A Wi(x) is translated into Wi(xw) and accepted if
the scheduler has not yet processed any Rj(xr)
such that

ts(Ti) < ts(xr) < ts(Tj)

Distributed DBMS 28

Optimistic Concurrency Control
Algorithms

Pessimistic execution

Optimistic execution

Validate Read Compute Write

ValidateRead Compute Write

Distributed DBMS 29

Transaction execution model: divide into
subtransactions each of which execute at a site

Tij: transaction Ti that executes at site j

Transactions run independently at each site until
they reach the end of their read phases

All subtransactions are assigned a timestamp at
the end of their read phase

Validation test performed during validation
phase. If one fails, all rejected.

Optimistic Concurrency Control
Algorithms

Distributed DBMS 30

Optimistic CC Validation Test
If all transactions Tk where ts(Tk) < ts(Tij) have
completed their write phase before Tij has
started its read phase, then validation succeeds

Transaction executions in serial order

Tk
R V W

R V WTij

Distributed DBMS 31

Optimistic CC Validation Test
If there is any transaction Tk such that ts(Tk)<ts(Tij) and
which completes its write phase while Tij is in its read
phase, then validation succeeds if WS(Tk) ∩
RS(Tij) = Ø

Read and write phases overlap, but Tij does not read data items
written by Tk

R V WTk
R V WTij

Distributed DBMS 32

Optimistic CC Validation Test

If there is any transaction Tk such that ts(Tk)< ts(Tij) and
which completes its read phase before Tij completes its
read phase, then validation succeeds if WS(Tk) ∩ RS(Tij)
= Ø and WS(Tk) ∩ WS(Tij) = Ø

They overlap, but don't access any common data items.

R V WTk
R V WTij

Distributed DBMS 33

A transaction is deadlocked if it is blocked and will
remain blocked until there is intervention.
Locking-based CC algorithms may cause deadlocks.
TO-based algorithms that involve waiting may cause
deadlocks.
Wait-for graph

If transaction Ti waits for another transaction Tj to release a lock on
an entity, then Ti → Tj in WFG.

Deadlock

Ti Tj

Distributed DBMS 34

Assume T1 and T2 run at site 1, T3 and T4 run at site 2.
Also assume T3 waits for a lock held by T4 which waits for
a lock held by T1 which waits for a lock held by T2 which,
in turn, waits for a lock held by T3.
Local WFG

Global WFG

Local versus Global WFG

T1

Site 1 Site 2

T2

T4

T3

T1

T2

T4

T3

Distributed DBMS 35

Deadlock Management
Prevention

Guaranteeing that deadlocks can never occur in the first
place. Check transaction when it is initiated. Requires no run
time support.

Avoidance
Detecting potential deadlocks in advance and taking action to
insure that deadlock will not occur. Requires run time support.

Detection and Recovery
Allowing deadlocks to form and then finding and breaking
them. As in the avoidance scheme, this requires run time
support.

Distributed DBMS 36

All resources which may be needed by a transaction
must be predeclared.

The system must guarantee that none of the resources will be
needed by an ongoing transaction.
Resources must only be reserved, but not necessarily allocated a
priori
Unsuitability of the scheme in database environment
Suitable for systems that have no provisions for undoing processes.

Evaluation:
– Reduced concurrency due to preallocation
– Evaluating whether an allocation is safe leads to added overhead.
– Difficult to determine (partial order)
+ No transaction rollback or restart is involved.

Deadlock Prevention

Distributed DBMS 37

Transactions are not required to request
resources a priori.

Transactions are allowed to proceed unless a
requested resource is unavailable.

In case of conflict, transactions may be
allowed to wait for a fixed time interval.

Order either the data items or the sites and
always request locks in that order.

More attractive than prevention in a database
environment.

Deadlock Avoidance

Distributed DBMS 38

Transactions are allowed to wait freely.

Wait-for graphs and cycles.

Topologies for deadlock detection algorithms
Centralized

Distributed

Hierarchical

Deadlock Detection

Distributed DBMS 39

One site is designated as the deadlock detector for
the system. Each scheduler periodically sends its
local WFG to the central site which merges them to a
global WFG to determine cycles.
How often to transmit?

Too often ⇒ higher communication cost but lower delays due to
undetected deadlocks
Too late ⇒ higher delays due to deadlocks, but lower
communication cost

Would be a reasonable choice if the concurrency
control algorithm is also centralized.
Proposed for Distributed INGRES

Centralized Deadlock Detection

Distributed DBMS 40

Build a hierarchy of detectors

Hierarchical Deadlock Detection

Site 1 Site 2 Site 3 Site 4

DD21 DD22 DD23 DD24

DD11 DD14

DDox

Distributed DBMS 41

Sites cooperate in detection of deadlocks.
One example:

The local WFGs are formed at each site and passed on to other
sites. Each local WFG is modified as follows:

Since each site receives the potential deadlock cycles from
other sites, these edges are added to the local WFGs
The edges in the local WFG which show that local transactions
are waiting for transactions at other sites are joined with edges
in the local WFGs which show that remote transactions are
waiting for local ones.

Each local deadlock detector:
looks for a cycle that does not involve the external edge. If it
exists, there is a local deadlock which can be handled locally.
looks for a cycle involving the external edge. If it exists, it
indicates a potential global deadlock. Pass on the information to
the next site.

Distributed Deadlock Detection

Distributed DBMS 42

Outline
Introduction
Distributed DBMS Architecture
Distributed Database Design
Distributed Query Processing
Distributed Concurrency Control
Distributed Reliability Protocols

Distributed Commit Protocols
Distributed Recovery Protocols

Distributed DBMS 43

Problem:

How to maintain

atomicity

durability

properties of transactions

Reliability

Distributed DBMS 44

Types of Failures
Transaction failures

Transaction aborts (unilaterally or due to deadlock)
Avg. 3% of transactions abort abnormally

System (site) failures
Failure of processor, main memory, power supply, …
Main memory contents are lost, but secondary storage contents
are safe
Partial vs. total failure

Media failures
Failure of secondary storage devices such that the stored data is
lost
Head crash/controller failure (?)

Communication failures
Lost/undeliverable messages
Network partitioning

Distributed DBMS 45

Local Recovery Management –
Architecture

Volatile storage
Consists of the main memory of the computer system (RAM).

Stable storage
Resilient to failures and loses its contents only in the presence of
media failures (e.g., head crashes on disks).
Implemented via a combination of hardware (non-volatile storage)
and software (stable-write, stable-read, clean-up) components.

Secondary
storage

Stable
database

Read Write

Write Read

Main memoryLocal Recovery
Manager

Database Buffer
Manager

Fetch,
Flush Database

buffers
(Volatile
database)

Distributed DBMS 46

Update Strategies

In-place update

Each update causes a change in one or more data values on
pages in the database buffers

Out-of-place update

Each update causes the new value(s) of data item(s) to be
stored separate from the old value(s)

Distributed DBMS 47

Database Log
Every action of a transaction must not only perform the action,
but must also write a log record to an append-only file.

In-Place Update Recovery
Information

New
stable database

state

Database
Log

Update
Operation

Old
stable database

state

Distributed DBMS 48

Logging Interface

Read
WriteWrite

Read

Main memory

Local Recovery
Manager

Database Buffer
Manager

Fetch,
Flush

Secondary
storage

Stable
log

Stable
database

Database
buffers
(Volatile

database)

Log
buffers

Write
Rea

d

Distributed DBMS 49

REDO'ing an action means performing it again.
The REDO operation uses the log information and
performs the action that might have been done
before, or not done due to failures.
The REDO operation generates the new image.

REDO Protocol

Database
Log

REDO
Old

stable database
state

New
stable database

state

Distributed DBMS 50

UNDO'ing an action means to restore the object
to its before image.
The UNDO operation uses the log information
and restores the old value of the object.

UNDO Protocol
New

stable database
state

Database
Log

UNDO
Old

stable database
state

Distributed DBMS 51

Write–Ahead Log (WAL)
Protocol

Notice:
If a system crashes before a transaction is committed, then all
the operations must be undone. Only need the before images
(undo portion of the log).
Once a transaction is committed, some of its actions might
have to be redone. Need the after images (redo portion of the
log).

WAL protocol :
Before a stable database is updated, the undo portion of the
log should be written to the stable log
When a transaction commits, the redo portion of the log must
be written to stable log prior to the updating of the stable
database.

Distributed DBMS 52

Distributed Reliability Protocols
Commit protocols

How to execute commit command for distributed transactions.
Issue: how to ensure atomicity and durability?

Termination protocols
If a failure occurs, how can the remaining operational sites deal with
it.
Non-blocking : the occurrence of failures should not force the sites
to wait until the failure is repaired to terminate the transaction.

Recovery protocols
When a failure occurs, how do the sites where the failure occurred
deal with it.
Independent : a failed site can determine the outcome of a
transaction without having to obtain remote information.

Independent recovery ⇒ non-blocking termination

Distributed DBMS 53

Two-Phase Commit (2PC)
Phase 1 : The coordinator gets the participants

ready to write the results into the database
Phase 2 : Everybody writes the results into the

database
Coordinator :The process at the site where the transaction
originates and which controls the execution
Participant :The process at the other sites that participate in
executing the transaction

Global Commit Rule:
The coordinator aborts a transaction if and only if at least one
participant votes to abort it.
The coordinator commits a transaction if and only if all of the
participants vote to commit it.

Distributed DBMS 54

Centralized 2PC

ready? yes/no commit/abort?commited/aborted

Phase 1 Phase 2

C C C

P

P

P

P

P

P

P

P

Distributed DBMS 55

2PC Protocol Actions
Participant Coordinator

No

Yes

VOTE-COMMIT

Yes GLOBAL-ABORT

No

write abort
in log

Abort

Commit
ACK

ACK

INITIAL

write abort
in log

write ready
in log

write commit
in log

Type of
msg

WAIT

Ready to
Commit?

write commit
in log

Any No? write abort
in log

ABORTCOMMIT

COMMITABORT

write
begin_commit

in log

write
end_of_transaction

in log

READY

INITIAL

PREPARE

VOTE-ABORT

VOTE-COMMIT

Distributed DBMS 56

Linear 2PC

Prepare VC/VA

Phase 1

Phase 2

GC/GA

VC/VA VC/VA VC/VA

VC: Vote-Commit, VA: Vote-Abort, GC: Global-commit, GA: Global-abort

1 2 3 4 5 N

GC/GA GC/GA GC/GA GC/GA

Distributed DBMS 57

Distributed 2PC

prepare
vote-abort/
vote-commit

global-commit/
global-abort
decision made
independently

Phase 1

Coordinator Participants Participants

Distributed DBMS 58

State Transitions in 2PC
INITIAL

WAIT

Commit command
Prepare

Vote-commit (all)
Global-commit

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

Coordinator Participants

Vote-abort
Global-abort

ABORT COMMIT COMMITABORT

Distributed DBMS 59

Site Failures - 2PC Termination

Timeout in INITIAL
Who cares

Timeout in WAIT
Cannot unilaterally commit
Can unilaterally abort

Timeout in ABORT or COMMIT
Stay blocked and wait for the acks

COORDINATOR

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Global-commit

ABORT COMMIT

Vote-abort
Global-abort

Distributed DBMS 60

Timeout in INITIAL
Coordinator must have failed in
INITIAL state
Unilaterally abort

Timeout in READY
Stay blocked

Site Failures - 2PC Termination

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

ABORT COMMIT

PARTICIPANTS

Distributed DBMS 61

Site Failures - 2PC Recovery

Failure in INITIAL
Start the commit process upon recovery

Failure in WAIT
Restart the commit process upon recovery

Failure in ABORT or COMMIT
Nothing special if all the acks have been
received
Otherwise the termination protocol is involved

COORDINATOR

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Global-commit

ABORT COMMIT

Vote-abort
Global-abort

Distributed DBMS 62

Failure in INITIAL
Unilaterally abort upon recovery

Failure in READY
The coordinator has been informed about
the local decision
Treat as timeout in READY state and
invoke the termination protocol

Failure in ABORT or COMMIT
Nothing special needs to be done

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

ABORT COMMIT

PARTICIPANTS

Site Failures - 2PC Recovery

Distributed DBMS 63

Problem With 2PC

Blocking
Ready implies that the participant waits for the coordinator
If coordinator fails, site is blocked until recovery
Blocking reduces availability

Independent recovery is not possible
However, it is known that:

Independent recovery protocols exist only for single site
failures; no independent recovery protocol exists which is
resilient to multiple-site failures.

So we search for these protocols – 3PC

Distributed DBMS 64

3PC is non-blocking.
A commit protocols is non-blocking iff

it is synchronous within one state transition, and
its state transition diagram contains

no state which is “adjacent” to both a commit
and an abort state, and
no non-committable state which is “adjacent” to
a commit state

Adjacent: possible to go from one stat to
another with a single state transition
Committable: all sites have voted to
commit a transaction

e.g.: COMMIT state

Three-Phase Commit

Distributed DBMS 65

Communication Structure

C

P

P

P

P

C

P

P

P

P

C

ready? yes/no
pre-commit/
pre-abort? commit/abort

Phase 1 Phase 2

P

P

P

P

C

yes/no ack

Phase 3

Distributed DBMS 66

Simple partitioning
Only two partitions

Multiple partitioning
More than two partitions

Formal bounds (due to Skeen):
There exists no non-blocking protocol that is resilient to a
network partition if messages are lost when partition
occurs.
There exist non-blocking protocols which are resilient to a
single network partition if all undeliverable messages are
returned to sender.
There exists no non-blocking protocol which is resilient to
a multiple partition.

Network Partitioning

Distributed DBMS 67

Independent Recovery Protocols for
Network Partitioning

No general solution possible
allow one group to terminate while the other is blocked
improve availability

How to determine which group to proceed?
The group with a majority

How does a group know if it has majority?
centralized

whichever partitions contains the central site should
terminate the transaction

voting-based (quorum)
different for replicated vs non-replicated databases

Distributed DBMS 68

The network partitioning problem is handled
by the commit protocol.
Every site is assigned a vote Vi.
Total number of votes in the system V
Abort quorum Va, commit quorum Vc

Va + Vc > V where 0 ≤ Va , Vc ≤ V
Before a transaction commits, it must obtain a commit
quorum Vc

Before a transaction aborts, it must obtain an abort
quorum Va

Quorum Protocols for
Non-Replicated Databases

Distributed DBMS 69

Network partitioning is handled by the replica
control protocol.
One implementation:

Assign a vote to each copy of a replicated data item (say
Vi) such that Σi Vi = V
Each operation has to obtain a read quorum (Vr) to read
and a write quorum (Vw) to write a data item
Then the following rules have to be obeyed in determining
the quorums:

Vr + Vw > V a data item is not read and written
by two transactions concurrently

Vw > V/2 two write operations from two
transactions cannot occur
concurrently on the same data item

Quorum Protocols for
Replicated Databases

Distributed DBMS 70

Simple modification of the ROWA rule:
When the replica control protocol attempts to read or write
a data item, it first checks if a majority of the sites are in the
same partition as the site that the protocol is running on (by
checking its votes). If so, execute the ROWA rule within
that partition.

Assumes that failures are “clean” which means:
failures that change the network's topology are detected by
all sites instantaneously
each site has a view of the network consisting of all the
sites it can communicate with

Use for Network Partitioning

