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Outline
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Outline
R Introduction

¯ What is a distributed DBMS
¯ Problems
¯ Current state-of-affairs

R Distributed DBMS Architecture
R Distributed Database Design
R Distributed Query Processing
R Distributed Concurrency Control
R Distributed Reliability Protocols
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Motivation

Database
Technology

Computer
Networks

integration distr ibution

integration

integration ≠ centralization
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Database
Systems
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What is a Distributed Database 
System?
A distributed database (DDB) is a collection of multiple, 
logically interrelated databases distributed over a computer 
network.

A distributed database management system (D–DBMS) is 
the software that manages the DDB and provides an 
access mechanism that makes this distribution transparent
to the users. 

Distributed database system (DDBS) = DDB + D–DBMS
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Q A timesharing computer system

Q A loosely or tightly coupled multiprocessor system

Q A database system which resides at one of the 
nodes of a network of computers - this is a 
centralized database on a network node

What is not a DDBS?
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Centralized DBMS on a Network

Communication
Network

Site 5

Site 1
Site 2

Site 3Site 4
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Distributed DBMS Environment

Communication
Network

Site 5

Site 1
Site 2

Site 3Site 4
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Implicit Assumptions
Q Data stored at a number of sites ¾ each site 

logically consists of a single processor.
Q Processors at different sites are interconnected 

by a computer network ¾ no multiprocessors
¯ parallel database systems

Q Distributed database is a database, not a 
collection of files ¾ data logically related as 
exhibited in the users’ access patterns

¯ relational data model 

Q D-DBMS is a full-fledged DBMS
¯ not remote file system, not a TP system
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Distributed DBMS Promises

� Transparent management of distributed, 
fragmented, and replicated data

� Improved reliability/availability through distributed 
transactions

� Improved performance

� Easier and more economical system expansion
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Transparency
Q Transparency is the separation of the higher level 

semantics of a system from the lower level 
implementation issues.

Q Fundamental issue is to provide
data independence

in the distributed environment

¯ Network (distribution) transparency

¯ Replication transparency

¯ Fragmentation transparency
X horizontal fragmentation: selection
X vertical fragmentation: projection
X hybrid
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Example

TITLE SAL

PAY

Elect. Eng. 40000
Syst. Anal. 34000
Mech. Eng. 27000
Programmer 24000

PROJ

PNO PNAME BUDGET

ENO ENAME TITLE

E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.
E3 A. Lee Mech. Eng.
E4 J. Mil ler Programmer
E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.
E7 R. Davis Mech. Eng.
E8 J. Jones Syst. Anal.

EMP

ENO PNO RESP

E1 P1 Manager 12

DUR

E2 P1 Analyst 24
E2 P2 Analyst 6
E3 P3 Consultant 10
E3 P4 Engineer 48
E4 P2 Programmer 18
E5 P2 Manager 24
E6 P4 Manager 48
E7 P3 Engineer 36

E8 P3 Manager 40

ASG

P1 Instrumentation 150000

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000

E7 P5 Engineer 23
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Transparent Access

SELECT ENAME,SAL

FROM EMP,ASG,PAY

WHERE DUR > 12

AND EMP.ENO = ASG.ENO

AND PAY.TITLE = EMP.TITLE Paris projects
Paris employees
Paris assignments
Boston employees

Montreal projects
Paris projects
New York projects 

with budget > 200000
Montreal employees
Montreal assignments

Boston

Communication
Network

Montreal

Paris

New
York

Boston projects
Boston employees
Boston assignments

Boston projects
New York employees
New York projects
New York assignments

Tokyo
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Distributed Database

Distributed Database –
User View
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Distributed DBMS - Reality

Communication
Subsystem

User
Query

DBMS
Software

DBMS
Software User

Application

DBMS
Software

User
ApplicationUser

Query
DBMS

Software

User
Query

DBMS
Software
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Potentially Improved 
Performance

Q Proximity of data to its points of use

¯ Requires some support for fragmentation and replication

Q Parallelism in execution

¯ Inter-query parallelism

¯ Intra-query parallelism
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Parallelism Requirements

Q  Have as much of the data required by each
application at the site where the application 
executes

¯ Full replication

Q How about updates?

¯ Updates to replicated data requires implementation of 
distributed concurrency control and commit protocols
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System Expansion

Q Issue is database scaling

Q Emergence of microprocessor and workstation 
technologies

¯ Demise of Grosh's law

¯ Client-server model of computing

Q Data communication cost vs telecommunication 
cost
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Distributed DBMS Issues
Q Distributed Database Design

¯ how to distribute the database

¯ replicated & non-replicated database distribution

¯ a related problem in directory management

Q  Query Processing
¯ convert user transactions to data manipulation instructions

¯ optimization problem

¯ min{cost = data transmission + local processing}

¯ general formulation is NP-hard
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Distributed DBMS Issues

Q  Concurrency Control
¯ synchronization of concurrent accesses

¯ consistency and isolation of transactions' effects

¯ deadlock management

Q Reliability
¯ how to make the system resilient to failures

¯ atomicity and durability
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Directory
Management

Relationship Between Issues

Reliabil i ty

Deadlock
Management

Query
Processing

Concurrency
Control

Distr ibution
Design
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Outline
Q Introduction
Q Distributed DBMS Architecture
R Distributed Database Design

¯ Fragmentation
¯ Data Placement

R Distributed Query Processing
R Distributed Concurrency Control
R Distributed Reliability Protocols
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Design Problem
Q In the general setting :

¯ Making decisions about the placement of data and programs 
across the sites of a computer network as well as possibly 
designing the network itself.

Q In Distributed DBMS, the placement of 
applications entails

¯ placement of the distributed DBMS software; and
¯ placement of the applications that run on the database
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Distribution Design

Q Top-down

¯ mostly in designing systems from scratch

¯ mostly in homogeneous systems

Q Bottom-up

¯ when the databases already exist at a number of sites
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Top-Down Design

User Input
View Integration

User Input

Requirements
Analysis

Objectives

Conceptual
Design

View Design

Access
Information ES’sGCS

Distribution
Design

Physical
Design

LCS’s

LIS’s

Distr ibuted DBMS 26

Distribution Design Issues

� Why fragment at all?

� How to fragment?

� How much to fragment?

� How to test correctness?

� How to allocate?

� Information requirements?
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Fragmentation
Q Can't we just distribute relations?
Q What is a reasonable unit of distribution?

¯ relation
X views are subsets of relations ⇒ locality 
X extra communication

¯ fragments of relations (sub-relations)
X concurrent execution of a number of transactions that 

access different portions of a relation
X views that cannot be defined on a single fragment will 

require extra processing
X semantic data control (especially integrity enforcement) 

more difficult
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PROJ1 : projects with budgets less 
than $200,000

PROJ2 : projects with budgets 
greater than or equal to 
$200,000

PROJ1

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

P4 Maintenance 310000 Paris

P5 CAD/CAM 500000 Boston

PNO PNAME LOC

P1 Instrumentation 150000 Montreal

P2 Database Develop. 135000 New York

BUDGET

PROJ2

Fragmentation Alternatives –
Horizontal

New York
New York

PROJ

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

New York
New York
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Fragmentation Alternatives –
Vertical

PROJ1: information about 
project budgets

PROJ2: information about 
project names and 
locations

PNO BUDGET

P1 150000

P3 250000
P2 135000

P4 310000
P5 500000

PNO PNAME LOC

P1 Instrumentation Montreal

P3 CAD/CAM New York
P2 Database Develop. New York

P4 Maintenance Paris
P5 CAD/CAM Boston

PROJ1 PROJ2

New York
New York

PROJ

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

New York
New York
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Degree of Fragmentation

Finding the suitable level of part i t ioning 
within this range

tuples
or

attr ibutes

relations

fini te number of alternatives
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Q Completeness
¯ Decomposition of relation R into fragments R1, R2, ..., Rn is complete 

iff each data item in R can also be found in some Ri

Q Reconstruction
¯ If relation R is decomposed into fragments R1, R2, ..., Rn, then there 

should exist some relational operator ∇ such that

R = ∇1≤i≤nRi 

Q Disjointness
¯ If relation R is decomposed into fragments R1, R2, ..., Rn, and data 

item di is in Rj, then di should not be in any other fragment Rk (k ≠ j ).

Correctness of Fragmentation
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Allocation Alternatives
Q Non-replicated

¯ partitioned : each fragment resides at only one site

Q Replicated
¯ fully replicated : each fragment at each site
¯ partially replicated : each fragment at some of the sites

Q Rule of thumb:

If                                        replication is advantageous,

otherwise replication may cause problems

read - only queries
update queries ≥1
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Q Horizontal Fragmentation (HF)
¯ Primary Horizontal Fragmentation (PHF)

¯ Derived Horizontal Fragmentation (DHF)

Q Vertical Fragmentation (VF)

Q Hybrid Fragmentation (HF)

Fragmentation
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Definition :
Rj = σFj

 (R ),  1 ≤ j ≤ w
where Fj is a selection formula.

Therefore,
A horizontal fragment Ri of relation R consists of all 
the tuples of R which satisfy a predicate pi. 

⇓
Given a set of predicates M, there are as many 
horizontal fragments of relation R as there are 
predicates. 

Primary Horizontal 
Fragmentation
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PHF – Example

TITLE, SAL

SKILL

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC

ENO, PNO, RESP, DUR

EMP PROJ

ASG

L1

L2 L3

Q Two candidate relations : PAY and PROJ
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PHF – Example

TITLE

Mech. Eng.

Programmer

SAL

27000

24000

PAY1 PAY2

TITLE

Elect. Eng.

Syst. Anal.

SAL

40000

34000
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PHF – Example

PROJ1

PNO PNAME BUDGET LOC PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal P2 Database
Develop. 135000 New York

PROJ2

PROJ4 PROJ6

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

PNO PNAME BUDGET LOC

MaintenanceP4 310000 Paris
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Q Completeness
¯ Since the set of predicates is complete and minimal, the 

selection predicates are complete

Q Reconstruction
¯ If relation R is fragmented into FR = {R1,R2,…,Rr}

R =   ∪∀Ri ∈FR Ri

Q Disjointness
¯ Predicates that form the basis of fragmentation should be 

mutually exclusive.  

PHF – Correctness
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Q Defined on a member relation of a link according 
to a selection operation specified on its owner.

¯ Each link is an equijoin.
¯ Equijoin can be implemented by means of semijoins.

Derived Horizontal 
Fragmentation

TITLE, SAL

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC

ENO, PNO, RESP, DUR

EMP PROJ

ASG

L1

L2 L3
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Given a link L where owner(L)=S and member(L)=R, the 
derived horizontal fragments of R are defined as

Ri = R     F Si, 1≤i≤w 

where w is the maximum number of fragments that will 
be defined on R and

Si = σFi
 (S)

where Fi is the formula according to which the primary 
horizontal fragment Si is defined.

DHF – Definition
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Given link L1 where owner(L1)=SKILL and 
member(L1)=EMP

EMP1 = EMP     SKILL1

EMP2 = EMP     SKILL2

where
SKILL1 = σ SAL≤30000 (SKILL)

SKILL2 = σSAL>30000 (SKILL)

DHF – Example

ENO ENAME TITLE

E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E7 R. Davis Mech. Eng.

EMP1

ENO ENAME TITLE

E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.
E5 B. Casey Syst. Anal.

EMP2

E6 L. Chu Elect. Eng.
E8 J. Jones Syst. Anal.
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DHF – Correctness
Q Completeness

¯ Referential integrity
¯ Let R be the member relation of a link whose owner is relation 

S which is fragmented as FS = {S1, S2, ..., Sn}. Furthermore, 
let A be the join attribute between R and S. Then, for each 
tuple t of R, there should be a tuple t' of S such that

t[A]=t'[A]

Q Reconstruction
¯ Same as primary horizontal fragmentation.

Q Disjointness
¯ Simple join graphs between the owner and the member 

fragments.
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Q Has been studied within the centralized context
¯ design methodology
¯ physical clustering

Q More difficult than horizontal, because more 
alternatives exist.
Two approaches :

¯ grouping
X attributes to fragments

¯ splitting
X relation to fragments

Vertical Fragmentation
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Vertical Fragmentation
Q Overlapping fragments

¯ grouping

Q Non-overlapping fragments
¯ splitting
¯ We do not consider the replicated key attributes to be 

overlapping.

Q Advantage:
¯ Easier to enforce functional dependencies (for integrity 

checking etc.)
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A relation R, defined over attribute set A and key K, 
generates the vertical partitioning FR = {R1, R2, …, Rr}.

Q Completeness
¯ The following should be true for A:

A =∪ ARi

Q Reconstruction
¯ Reconstruction can be achieved by

R = K Ri ∀Ri ∈FR

Q Disjointness
¯ TID's are not considered to be overlapping since they are maintained by 

the system
¯ Duplicated keys are not considered to be overlapping

VF – Correctness
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Fragment Allocation
Q Problem Statement

Given 
F = {F1, F2, …, Fn} fragments
S ={S1, S2, …, Sm} network sites 
Q = {q1, q2,…, qq} applications 

Find the "optimal" distribution of F to S.

Q Optimality
¯ Minimal cost

X Communication + storage + processing (read & update)
X Cost in terms of time (usually)

¯ Performance
Response time and/or throughput

¯ Constraints
X Per site constraints (storage & processing)
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General Form
min(Total Cost)

subject to
response time constraint
storage constraint
processing constraint

Decision Variable

Allocation Model

xij = 1 if fragment Fi is stored at site Sj
0 otherwise

 
 
 
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Q Total Cost

Q Storage Cost (of fragment Fj at Sk)

Q Query Processing Cost (for one query)

processing component + transmission component

Allocation Model

(unit storage cost at Sk) ∗ (size of Fj) ∗xjk

query processing cost +
all queries∑

cost of storing a fragment at a site
all fragments∑all sites∑
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Q Query Processing Cost
Processing component

access cost + integrity enforcement cost + concurrency control cost
¯ Access cost

¯ Integrity enforcement and concurrency control costs
X Can be similarly calculated

Allocation Model

(no. of update accesses+ no. of read accesses) ∗
all fragments∑all sites∑

xij ∗local processing cost at a site
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Q Query Processing Cost
Transmission component

cost of processing updates + cost of processing retrievals
¯ Cost of updates

¯ Retrieval Cost

Allocation Model

update message cost  +
all fragments∑all sites∑

acknowledgment cost   
all fragments∑all sites∑

(minall sitesall fragments∑ cost of retr ieval command  +

cost of sending back the result)
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Q Constraints
¯ Response Time

execution time of query  ≤ max. allowable response time for 
that query

¯ Storage Constraint (for a site)

¯ Processing constraint (for a site)

Allocation Model

storage requirement of a fragment at that site  ≤
all fragments∑

storage capacity at that site

processing load of a query at that site  ≤
all queries∑

processing capacity of that site
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Q Solution Methods
¯ FAP is NP-complete

¯ DAP also NP-complete

Q Heuristics based on
¯ single commodity warehouse location (for FAP)

¯ knapsack problem

¯ branch and bound techniques

¯ network flow

Allocation Model
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Q Attempts to reduce the solution space

¯ assume all candidate partitionings known; select the “best” 
partitioning

¯ ignore replication at first

¯ sliding window on fragments

Allocation Model
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Outline
Q Introduction
Q Distributed DBMS Architecture
Q Distributed Database Design
R Distributed Query Processing

¯ Query Processing Methodology
¯ Distributed Query Optimization

R Distributed Concurrency Control
R Distributed Reliability Protocols



Page 28

Distributed DBMS 55

Query Processing

high level user query

query 
processor

low level data manipulation
commands
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Query Processing Components
Q Query language that is used

¯ SQL: “intergalactic dataspeak”

Q Query execution methodology
¯ The steps that one goes through in executing high-level 

(declarative) user queries.

Q Query optimization
¯ How do we determine the “best” execution plan?
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SELECT ENAME
FROM EMP,ASG
WHERE EMP.ENO = ASG.ENO 
AND DUR > 37

Strategy 1
ΠENAME(σDUR>37∧EMP.ENO=ASG.ENO (EMP × ASG))

Strategy 2

ΠENAME(EMP ENO (σDUR>37 (ASG)))

Strategy 2 avoids Cartesian product, so is “better”

Selecting Alternatives
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What is the Problem?
Site 1 Site 2 Site 3 Site 4 Site 5

EMP1=σENO≤“E3”(EMP) EMP2=σENO>“E3”(EMP)ASG2=σENO>“E3”(ASG)ASG1=σENO≤“E3”(ASG) Result

Site 5

Site 1 Site 2 Site 3 Site 4

ASG1 EMP1 EMP2ASG2

result2=(EMP1∪ EMP2) ENOσDUR>37(ASG1∪ ASG1)

Site 4

result = EMP1
’∪EMP2

’

Site 3

Site 1 Site 2

EMP2
’=EMP2      ENOASG2

’EMP1
’=EMP1      ENOASG1

’

ASG1
’=σDUR>37(ASG1) ASG2

’=σDUR>37(ASG2)

Site 5

ASG2
’ASG1

’

EMP1
’ EMP2

’
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Q Assume:
¯ size(EMP) = 400, size(ASG) = 1000
¯ tuple access cost = 1 unit; tuple transfer cost = 10 units

Q Strategy 1
� produce ASG': (10+10)∗tuple access cost 20
� transfer ASG' to the sites of EMP: (10+10)∗tuple transfer cost    200
� produce EMP': (10+10) ∗tuple access cost∗2 40
� transfer EMP' to result site: (10+10) ∗tuple transfer cost 200

Total cost 460

Q Strategy 2
� transfer EMP to site 5:400∗tuple transfer cost 4,000
� transfer ASG to site 5 :1000∗tuple transfer cost 10,000
� produce ASG':1000∗tuple access cost 1,000
� join EMP and ASG':400∗20∗tuple access cost 8,000

Total cost 23,000

Cost of Alternatives
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Minimize a cost function
I/O cost + CPU cost + communication cost

These might have different weights in different 
distributed environments
Wide area networks 

¯ communication cost will dominate
X low bandwidth
X low speed
X high protocol overhead

¯ most algorithms ignore all other cost components

Local area networks
¯ communication cost not that dominant
¯ total cost function should be considered

Can also maximize throughput

Query Optimization Objectives
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Query Optimization Issues –
Types of Optimizers

Q Exhaustive search
¯ cost-based
¯ optimal
¯ combinatorial complexity in the number of relations

Q Heuristics
¯ not optimal
¯ regroup common sub-expressions
¯ perform selection, projection first
¯ replace a join by a series of semijoins
¯ reorder operations to reduce intermediate relation size
¯ optimize individual operations
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Query Optimization Issues –
Optimization Granularity

Q Single query at a time
¯ cannot use common intermediate results

Q Multiple queries at a time
¯ efficient if many similar queries
¯ decision space is much larger
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Query Optimization Issues –
Optimization Timing

Q Static
¯compilation ⇒ optimize prior to the execution
¯difficult to estimate the size of the intermediate results  ⇒

error propagation
¯can amortize over many executions
¯R*

Q Dynamic
¯run time optimization
¯exact information on the intermediate relation sizes
¯have to reoptimize for multiple executions
¯Distributed INGRES

Q Hybrid
¯compile using a static algorithm
¯ if the error in estimate sizes > threshold, reoptimize at run 

time
¯MERMAID
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Query Optimization Issues –
Statistics

Q Relation
¯ cardinality
¯ size of a tuple
¯ fraction of tuples participating in a join with another relation

Q Attribute
¯ cardinality of domain
¯ actual number of distinct values

Q Common assumptions
¯ independence between different attribute values
¯ uniform distribution of attribute values within their domain
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Query Optimization 
Issues – Decision Sites

Q Centralized
¯ single site determines the “best” schedule
¯ simple
¯ need knowledge about the entire distributed database

Q Distributed
¯ cooperation among sites to determine the schedule
¯ need only local information
¯ cost of cooperation

Q Hybrid
¯ one site determines the global schedule
¯ each site optimizes the local subqueries
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Query Optimization Issues –
Network Topology

Q Wide area networks (WAN) – point-to-point
¯ characteristics

X low bandwidth
X low speed
X high protocol overhead

¯ communication cost will dominate; ignore all other cost factors
¯ global schedule to minimize communication cost
¯ local schedules according to centralized query optimization

Q Local area networks (LAN)
¯ communication cost not that dominant
¯ total cost function should be considered
¯ broadcasting can be exploited (joins)
¯ special algorithms exist for star networks
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Distributed Query Processing 
Methodology

Calculus Query on Distr ibuted
Relations

CONTROL
SITE

LOCAL
SITES

Query
Decomposition

Query
Decomposition

Data
Localization

Data
Localization

Algebraic Query on Distr ibuted
Relations

Global
Optimization

Global
Optimization

Fragment Query

Local
Optimization

Local
Optimization

Optimized Fragment Query
with Communication Operations

Optimized Local
Queries

GLOBAL
SCHEMA

GLOBAL
SCHEMA

FRAGMENT
SCHEMA

FRAGMENT
SCHEMA

STATS ON
FRAGMENTS
STATS ON

FRAGMENTS

LOCAL
SCHEMAS
LOCAL

SCHEMAS
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Step 1 – Query Decomposition
Input :  Calculus query on global relations
Q Normalization

¯ manipulate query quantifiers and qualification

Q Analysis
¯ detect and reject “incorrect” queries
¯ possible for only a subset of relational calculus

Q Simplification
¯ eliminate redundant predicates

Q Restructuring
¯ calculus query ⇒ algebraic query
¯ more than one translation is possible
¯ use transformation rules
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Q Lexical and syntactic analysis
¯ check validity (similar to compilers)
¯ check for attributes and relations
¯ type checking on the qualification

Q Put into normal form
¯ Conjunctive normal form

(p11∨p12∨…∨p1n) ∧…∧ (pm1∨pm2∨…∨pmn)
¯ Disjunctive normal form

(p11∧p12 ∧…∧p1n) ∨…∨ (pm1 ∧pm2∧…∧ pmn)
¯ OR's mapped into union
¯ AND's mapped into join or selection

Normalization
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Q Refute incorrect queries
Q Type incorrect

¯ If any of its attribute or relation names are not defined 
in the global schema

¯ If operations are applied to attributes of the wrong type
Q Semantically incorrect

¯ Components do not contribute in any way to the 
generation of the result

¯ Only a subset of relational calculus queries can be 
tested for correctness

¯ Those that do not contain disjunction and negation
¯ To detect

X connection graph (query graph)
X join graph

Analysis
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Q Why simplify?
¯ Remember the example

Q How? Use transformation rules
¯ elimination of redundancy

X idempotency rules
p1 ∧ ¬( p1) ⇔ false
p1 ∧ (p1 ∨ p2) ⇔ p1

p1 ∨ false ⇔ p1

…

¯ application of transitivity
¯ use of integrity rules

Simplification
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SELECT TITLE
FROM EMP
WHERE EMP.ENAME = “J. Doe”
OR (NOT(EMP.TITLE = “Programmer”)
AND (EMP.TITLE = “Programmer” 
OR EMP.TITLE = “Elect. Eng.”) 
AND NOT(EMP.TITLE = “Elect. Eng.”))

⇓
SELECT TITLE
FROM EMP
WHERE EMP.ENAME = “J. Doe”

Simplification – Example
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Q Convert relational calculus to 
relational algebra

Q Make use of query trees
Q Example

Find the names of employees other than J. 
Doe who worked on the CAD/CAM project 
for either 1 or 2 years.

SELECT ENAME
FROM EMP, ASG, PROJ
WHERE EMP.ENO = ASG.ENO 
AND ASG.PNO = PROJ.PNO 
AND ENAME ≠ “J. Doe”
AND PNAME = “CAD/CAM” 
AND (DUR = 12 OR DUR = 24)

Restructuring
ΠENAME

σDUR=12 OR DUR=24

σPNAME=“CAD/CAM”

σENAME≠“J. DOE”

PROJ ASG EMP

Project

Select

Join

PNO

ENO
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Q Commutativity of binary operations
¯ R × S ⇔ S × R
¯ R S ⇔ S R
¯ R ∪ S ⇔ S ∪ R

Q Associativity of binary operations
¯ ( R × S ) × T ⇔ R × (S × T)
¯ ( R S )    T ⇔ R (S T )

Q Idempotence of unary operations
¯ ΠA’(ΠA’(R)) ⇔ ΠA’(R)
¯ σp1(A1)(σp2(A2)(R)) = σp1(A1) ∧ p2(A2)(R)
where R[A] and A' ⊆ A, A" ⊆ A and A' ⊆ A" 

Q Commuting selection with projection

Restructuring –Transformation 
Rules
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Q Commuting selection with binary operations
¯σp(A)(R × S) ⇔ (σp(A) (R)) × S

¯σp(Ai)
(R (Aj,Bk) S) ⇔ (σp(Ai) 

(R))    (Aj,Bk) S

¯σp(Ai)
(R ∪ T) ⇔ σp(Ai) 

(R) ∪ σp(Ai) 
(T)

where Ai belongs to R and T

Q Commuting projection with binary operations
¯ΠC(R × S) ⇔ Π A’(R) × Π B’(S)

¯ΠC(R (Aj,Bk) S) ⇔ Π A’(R)    (Aj,Bk) Π B’(S)

¯ΠC(R ∪ S) ⇔ Π C (R) ∪ Π C (S)

where R[A] and S[B]; C = A' ∪ B' where  A' ⊆ A, B' ⊆ B

Restructuring –
Transformation Rules
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Example
Recall the previous example:

Find the names of employees other than J. 
Doe who worked on the CAD/CAM project 
for either one or two years.

SELECT ENAME
FROM PROJ, ASG, EMP
WHERE ASG.ENO=EMP.ENO
AND ASG.PNO=PROJ.PNO
AND ENAME≠“J. Doe”
AND PROJ.PNAME=“CAD/CAM”
AND (DUR=12 OR DUR=24)

ΠENAME

σDUR=12 OR DUR=24

σPNAME=“CAD/CAM”

σENAME≠“J. DOE”

PROJ ASG EMP

Project

Select

Join

PNO

ENO
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Equivalent Query
ΠENAME

σPNAME=“CAD/CAM” ∧(DUR=12 ∨ DUR=24) ∧ ENAME≠“J. DOE”

×

PROJASG EMP

PNO ∧ENO 
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EMP

ΠENAME

σENAME ≠ "J. Doe"

ASGPROJ

ΠPNO,ENAME

σPNAME = "CAD/CAM"

ΠPNO

σDUR =12 ∧ DUR=24

ΠPNO,ENO

ΠPNO,ENAME

Restructuring

PNO

ENO
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Step 2 – Data Localization

Input:  Algebraic query on distributed relations

Q Determine which fragments are involved

Q Localization program
¯ substitute for each global query its materialization program

¯ optimize
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Example
Assume 

¯ EMP is fragmented into EMP1, EMP2, 
EMP3 as follows:

X EMP1=σENO≤“E3”(EMP)

X EMP2= σ“E3”<ENO≤“E6”(EMP)

X EMP3=σENO≥“E6”(EMP)
¯ ASG fragmented into ASG1 and ASG2

as follows:

X ASG1=σENO≤“E3”(ASG)

X ASG2=σENO>“E3”(ASG)

Replace EMP by (EMP1∪EMP2∪EMP3 )  
and ASG by (ASG1 ∪ ASG2) in any 
query 

ΠENAME

σDUR=12 OR DUR=24

σPNAME=“CAD/CAM”

σENAME≠“J. DOE”

PROJ ∪ ∪

EMP1 EMP2 EMP3 ASG1 ASG2

PNO

ENO
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Provides Parallellism

EMP3 ASG1EMP2 ASG2EMP1 ASG1

∪

EMP3 ASG2

ENO ENO ENO ENO

Distributed DBMS 82

Eliminates Unnecessary Work

EMP2 ASG2EMP1 ASG1

∪

EMP3 ASG2

ENO ENO ENO
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Q Reduction with selection
¯ Relation R and FR={R1,  R2, …, Rw} where Rj=σ pj

(R)

σ pi
(Rj)= φ if ∀x in R: ¬(pi(x) ∧ pj(x))

¯ Example
SELECT *
FROM EMP
WHERE ENO=“E5”

Reduction for PHF

σ ENO=“E5” 

∪

EMP1 EMP2 EMP3 EMP2

σ ENO=“E5” 
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Q Reduction with join
¯ Possible if fragmentation is done on join attribute

¯ Distribute join over union

(R1 ∪ R2)    S ⇔ (R1      S) ∪ (R2      S)

¯ Given Ri = σpi
(R) and Rj = σpj

(R)

Ri Rj = φ if ∀x in Ri, ∀y in Rj: ¬(pi(x) ∧ pj(y))

Reduction for PHF
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Q Reduction with join - Example
¯ Assume EMP is fragmented as before and

ASG1: σENO ≤ "E3"(ASG)
ASG2: σENO > "E3"(ASG)

¯ Consider the query
SELECT*
FROM EMP, ASG
WHERE EMP.ENO=ASG.ENO

Reduction for PHF

∪ ∪

EMP1 EMP2 EMP3 ASG1 ASG2

ENO
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Q Reduction with join - Example 
¯ Distribute join over unions
¯ Apply the reduction rule

Reduction for PHF

∪

EMP1 ASG1 EMP2 ASG2 EMP3 ASG2

ENO ENO ENO
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Q Find useless (not empty) intermediate relations
Relation R defined over attributes A = {A1, ..., An} vertically fragmented 
as Ri = ΠA' (R) where A' ⊆ A:

ΠD,K(Ri) is useless if the set of projection attributes D is not in A'

Example: EMP1= ΠENO,ENAME (EMP); EMP2= ΠENO,TITLE (EMP)
SELECT ENAME

FROM EMP

Reduction for VF

ΠENAME

EMP1EMP1 EMP2

ΠENAME

⇒ENO
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Step 3 – Global Query 
Optimization

Input:  Fragment query
Q Find the best (not necessarily optimal) global 

schedule
¯ Minimize a cost function
¯ Distributed join processing

X Bushy vs. linear trees
X Which relation to ship where?
X Ship-whole vs ship-as-needed

¯ Decide on the use of semijoins
X Semijoin saves on communication at the expense of 

more local processing.
¯ Join methods

X nested loop vs ordered joins (merge join or hash join)
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Cost-Based Optimization
Q Solution space

¯ The set of equivalent algebra expressions (query trees).

Q Cost function (in terms of time) 
¯ I/O cost + CPU cost + communication cost
¯ These might have different weights in different distributed 

environments (LAN vs WAN).
¯ Can also maximize throughput 

Q Search algorithm
¯ How do we move inside the solution space?
¯ Exhaustive search, heuristic algorithms (iterative 

improvement, simulated annealing, genetic,…)
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Query Optimization Process

Search Space
Generation

Search
Strategy

Equivalent QEP

Input Query

Transformation
Rules

Cost Model

Best QEP
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Search Space
Q Search space characterized by  

alternative execution plans
Q Focus on join trees
Q For N relations, there are O(N!) 

equivalent join trees that can be 
obtained by  applying 
commutativity and associativity
rules
SELECT ENAME,RESP
FROM EMP, ASG, PROJ
WHERE EMP.ENO=ASG.ENO
AND ASG.PNO=PROJ.PNO

PROJ

ASGEMP

PROJ ASG

EMP

PROJ

ASG

EMP

×

ENO

ENO

PNO

PNO

ENO,PNO

Distr ibuted DBMS 92

Search Space
Q Restrict by means of heuristics

¯ Perform unary operations before binary operations
¯ …

Q Restrict the shape of the join tree
¯ Consider only linear trees, ignore bushy ones

R2R1

R3

R4

Linear Join Tree

R2R1 R4R3

Bushy Join Tree
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Search Strategy
Q How to “move” in the search space.
Q Deterministic

¯ Start from base relations and build plans by adding one 
relation at each step

¯ Dynamic programming: breadth-first
¯ Greedy: depth-first

Q Randomized
¯ Search for optimalities around a particular starting point
¯ Trade optimization time for execution time
¯ Better when > 5-6 relations
¯ Simulated annealing
¯ Iterative improvement
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Search Strategies
Q Deterministic

Q Randomized

R2R1

R3

R4

R2R1 R2R1

R3

R2R1

R3

R3R1

R2
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Q Total Time (or Total Cost)
¯ Reduce each cost (in terms of time) component individually

¯ Do as little of each cost component as possible

¯ Optimizes the utilization of the resources

Increases system throughput

Q Response Time
¯ Do as many things as possible in parallel

¯ May increase total time because of increased total activity

Cost Functions
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Summation of all cost factors

Total cost = CPU cost + I/O cost + communication cost

CPU cost = unit instruction cost ∗ no.of instructions

I/O cost = unit disk I/O cost ∗ no. of disk I/Os

communication cost = message initiation + transmission

Total Cost
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Q Wide area network 
¯ message initiation and transmission costs high

¯ local processing cost is low (fast mainframes or 
minicomputers)

¯ ratio of communication to I/O costs = 20:1

Q Local area networks
¯ communication and local processing costs are more or less 

equal

¯ ratio = 1:1.6

Total Cost Factors
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Elapsed time between the initiation and the completion of a 
query

Response time = CPU time + I/O time + communication time

CPU time = unit instruction time ∗ no. of sequential instructions

I/O time = unit I/O time ∗ no. of sequential I/Os

communication time = unit msg initiation time ∗ no. of 
sequential msg + unit transmission time ∗ no. of 
sequential bytes

Response Time
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Assume that only the communication cost is considered
Total time = 2 ∗ message initialization time + unit transmission 

time ∗ (x+y)
Response time = max {time to send x from 1 to 3, time to send y

from 2 to 3}
time to send x from 1 to 3 = message initialization time + unit 

transmission time ∗ x
time to send y from 2 to 3 = message initialization time + unit 

transmission time ∗ y

Example
Site 1

Site 2

x units

y units

Site 3
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Q Primary cost factor: size of intermediate relations
Q Make them precise ⇒ more costly to maintain

¯ For each relation R[A1, A2, …, An] fragmented as R1, …, Rr

X length of each attribute: length(Ai) 
X the number of distinct values for each attribute in each fragment: 

card(∏Ai
Rj)

X maximum and minimum values in the domain of each attribute: 
min(Ai), max(Ai)

X the cardinalities of each domain: card(dom[Ai])
X the cardinalities of each fragment: card(Rj)

¯ Selectivity factor of each operation for relations
X For joins

Optimization Statistics

SF (R,S) =
card(R S)

card(R) ∗ card(S)
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Selection
size(R) = card(R) ∗ length(R)
card(σF (R)) = SFσ (F) ∗ card(R)

where

Intermediate Relation 
Sizes

S Fσ(A = value) = 
card(∏A(R))

1

S Fσ(A > value) = 
max(A) – min(A) 
max(A) – value

S Fσ(A < value) = 
max(A) – min(A) 
value  – max(A)

SFσ(p(Ai) ∧ p(Aj)) = SFσ(p(Ai)) ∗ SFσ(p(Aj))

SFσ(p(Ai) ∨ p(Aj)) = SFσ(p(Ai)) + SFσ(p(Aj)) – (SFσ(p(Ai)) ∗ SFσ(p(Aj)))

SFσ(A ∈ value) = SFσ(A= value) ∗ card({values})
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Projection
card(ΠA(R))=card(R)

Cartesian Product
card(R × S) = card(R) ∗ card(S)

Union
upper bound: card(R ∪ S) = card(R) + card(S)

lower bound: card(R ∪ S) = max{card(R), card(S)}

Set Difference
upper bound: card(R–S) = card(R)

lower bound: 0

Intermediate Relation Sizes
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Join
¯ Special case: A is a key of R and B is a foreign key of S;

card(R A=B S) = card(S)

¯ More general:

card(R S) = SF ∗ card(R) ∗ card(S)

Semijoin
card(R A S) = SF (S.A) ∗ card(R)

where

SF (R A S)= SF (S.A) =

Intermediate Relation Size

card(∏A(S))
card(dom[A])
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� Simple (i.e., mono-relation) queries are executed 
according to the best access path

� Execute joins

2.1 Determine the possible ordering of joins

2.2 Determine the cost of each ordering

2.3 Choose the join ordering with minimal cost

System R Algorithm
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For  joins, two alternative algorithms :
Q Nested loops

for each tuple of external relation (cardinality n1)
for each tuple of internal relation (cardinality n2)

join two tuples if the join predicate is true
end

end
¯ Complexity: n1∗n2

Q Merge join
sort relations 
merge relations

¯ Complexity: n1+ n2 if relations are previously sorted and 
equijoin

System R Algorithm
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Names of employees working on the CAD/CAM 
project

Assume
¯ EMP has an index on ENO,
¯ ASG has an index on PNO,
¯ PROJ has an index on PNO and an index on PNAME

System R Algorithm – Example

PNOENO

PROJ

ASG

EMP
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� Choose the best access paths to each relation
¯ EMP: sequential scan (no selection on  EMP)
¯ ASG: sequential scan (no selection on  ASG)
¯ PROJ: index on PNAME (there is a  selection on

PROJ based on PNAME)

� Determine the best join ordering
¯ EMP     ASG     PROJ
¯ ASG     PROJ     EMP
¯ PROJ     ASG      EMP
¯ ASG     EMP     PROJ
¯ EMP × PROJ    ASG
¯ PROJ × EMP     ASG
¯ Select the best ordering based on the join costs evaluated 

according to the two methods

System R Example (cont’d)
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Best total join order is one of
((ASG      EMP)      PROJ)
((PROJ      ASG)      EMP)

System R Algorithm

EMP  ASG
pruned

ASGEMP PROJ

(PROJ ASG) EMP 

EMP × PROJ
pruned

ASG  EMP PROJ × EMP
pruned

PROJ ASG

(ASG EMP) PROJ 

ASG  PROJ
pruned

Alternatives
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Q ((PROJ    ASG)    EMP) has a useful index on 
the select attribute and direct access to the join 
attributes of ASG and EMP

Q Therefore, chose it with the following access 
methods:

¯ select PROJ using index on PNAME

¯ then join with ASG using index on PNO

¯ then join with EMP using index on ENO

System R Algorithm
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Q Ordering joins

¯ Distributed INGRES

¯ System R*

Q Semijoin ordering

¯ SDD-1

Join Ordering in Fragment 
Queries
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Q Consider two relations only

Q Multiple relations more difficult because too many 
alternatives.

¯ Compute the cost of all alternatives and select the 
best one.

X Necessary to compute the size of intermediate 
relations which is difficult.

¯ Use heuristics

Join Ordering

R
if size (R) < size (S)

if size (R) > size (S)
S
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Consider
PROJ      PNO  ASG    ENO EMP

Join Ordering – Example

Site 2

Site 3Site 1

PNOENO

PROJ

ASG

EMP



Page 57

Distributed DBMS 113

Execution alternatives:
1. EMP → Site 2 2. ASG → Site 1

Site 2 computes EMP'=EMP    ASG Site 1 computes EMP'=EMP     ASG
EMP' → Site 3 EMP' → Site 3
Site 3 computes EMP’      PROJ Site 3 computes EMP’     PROJ

3. ASG → Site 3 4. PROJ → Site 2
Site 3 computes ASG'=ASG      PROJ Site 2 computes PROJ'=PROJ     ASG
ASG' → Site 1 PROJ' → Site 1
Site 1 computes ASG'     EMP Site 1 computes PROJ'      EMP

5. EMP → Site 2
PROJ → Site 2
Site 2 computes EMP      PROJ      ASG

Join Ordering – Example
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Q Consider the join of two relations: 
¯ R[A]  (located at site 1)
¯ S[A] (located at site 2)

Q Alternatives:
1 Do the join R A S

2 Perform one of the semijoin equivalents

R A S ⇔ (R A S)     A S

⇔ R     A (S A R)

⇔ (R A S)     A (S A R)

Semijoin Algorithms
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Q Perform the join
¯ send R to Site 2

¯ Site 2 computes R A S

Q Consider semijoin (R   A S)   A S
¯ S' ← ∏A(S)

¯ S'  → Site 1

¯ Site 1 computes R' = R     A S'

¯ R' → Site 2

¯ Site 2 computes R' A S

Semijoin is better if
size(ΠA(S)) + size(R A S)) < size(R)

Semijoin Algorithms
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Distributed Query 
Processing

Algorithms Opt.
Timing

Objective
Function

Opt.
Factors

Network
Topology

Semijoin Stats Fragments

Dist.
INGRES

Dynamic Resp.
time or

Total time

Msg. Size,
Proc. Cost

General or
Broadcast

No 1 Horizontal

R* Static Total time No. Msg.,
Msg. Size,
IO, CPU

General or
Local

No 1, 2 No

SDD-1 Static Total time Msg. Size General Yes 1,3,4,
5

No

1: relation cardinality; 2: number of unique values per attribute; 3: join selectivity factor; 4: size
of projection on each join attribute; 5: attribute size and tuple size
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Q Cost function includes local processing as well as 
transmission

Q Considers only joins

Q Exhaustive search

Q Compilation

Q Published papers provide solutions to handling 
horizontal and vertical fragmentations but the 
implemented prototype does not

R* Algorithm
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Performing joins
Q Ship whole

¯ larger data transfer
¯ smaller number of messages
¯ better if relations are small

Q Fetch as needed
¯ number of messages = O(cardinality of external relation)
¯ data transfer per message is minimal
¯ better if relations are large and the selectivity is good

R* Algorithm
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1. Move outer relation tuples to the site of the inner 
relation
(a) Retrieve outer tuples

(b) Send them to the inner relation site

(c) Join them as they arrive

Total Cost = cost(retrieving qualified outer tuples) 

+ no. of outer tuples fetched ∗
cost(retrieving qualified inner tuples)

+ msg. cost ∗ (no. outer tuples fetched ∗ 
         avg. outer tuple size) / msg. size

R* Algorithm –
Vertical Partitioning & Joins
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2. Move inner relation to the site of outer relation
cannot join as they arrive; they need to be stored

Total Cost = cost(retrieving qualified outer tuples)

+ no. of outer tuples fetched ∗
cost(retrieving matching inner tuples 
from temporary storage)

+ cost(retrieving qualified inner tuples)

+ cost(storing all qualified inner tuples 
in temporary storage) 

+ msg. cost ∗ (no. of inner tuples fetched ∗
avg. inner tuple size) / msg. size

R* Algorithm –
Vertical Partitioning & Joins
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3. Move both inner and outer relations to another site 
Total cost = cost(retrieving qualified outer tuples)

+ cost(retrieving qualified inner tuples)

+ cost(storing inner tuples in storage)

+ msg. cost ∗ (no. of outer tuples fetched ∗
avg. outer tuple size) / msg. size

+ msg. cost ∗ (no. of inner tuples fetched ∗
avg. inner tuple size) / msg. size

+ no. of outer tuples fetched ∗
cost(retrieving inner tuples from 
temporary storage)

R* Algorithm –
Vertical Partitioning & Joins
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4. Fetch inner tuples as needed
(a) Retrieve qualified tuples at outer relation site
(b) Send request containing join column value(s) for outer tuples to 

inner relation site
(c) Retrieve matching inner tuples at inner relation site
(d) Send the matching inner tuples to outer relation site
(e) Join as they arrive 

Total Cost = cost(retrieving qualified outer tuples)
+ msg. cost ∗ (no. of outer tuples fetched)
+ no. of outer tuples fetched ∗ (no. of 

inner tuples fetched ∗ avg. inner tuple
size ∗ msg. cost / msg. size)
+ no. of outer tuples fetched ∗

cost(retrieving matching inner tuples 
for one outer value)

R* Algorithm –
Vertical Partitioning & Joins
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Step 4 – Local Optimization

Input:  Best global execution schedule

Q Select the best access path

Q Use the centralized optimization techniques


