Data (and Links) on the Web

Alberto Mendelzon University of Toronto

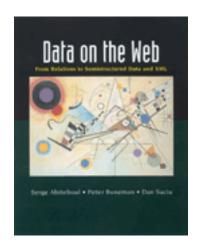
http://www.cs.toronto.edu/~mendel

Joint work with Gus Arocena, Attila Barta, George Mihaila, Tova Milo, Davood Rafiei, Greg Keast, Elaine Toms, Joan Cherry

Outline

Data on the Web

semistructured data: data models, query languages


- •What about links?
- Two link-centric projects

WebSQL/WebOQL : unstructured/semistructured data + links TOPIC: exploiting links to evaluate page reputations

•Future Work

Data on the Web

Abiteboul, Buneman, Suciu, 2000.

Excellent survey of semistructured data

Semistructured Data

60's: Data in files, structure in application

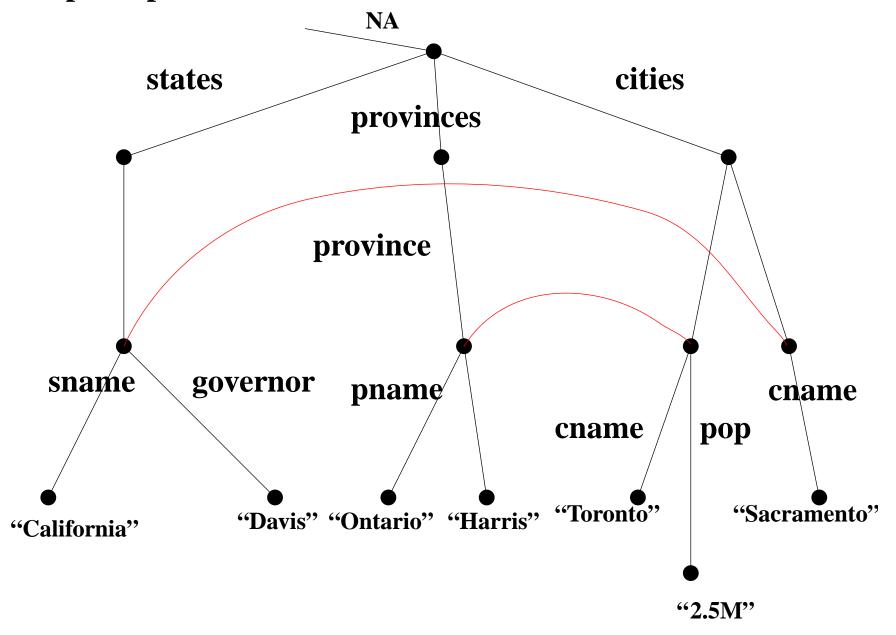
programs

70's,80's: Data and structure (schema) in DBMS

90's: Data on the Web, where is the schema?

"Schemaless": HTML

"Self-Describing": XML


Example: an XML document

```
<north-america>
<states>
  <state id = "s1">
     <sname> California </sname>
     <capital idref="c1"/>
     <governor> Gray Davis </governor>
  </state>
</states>
cprovinces>
  cprovince id = "p1">
     <pname> Ontario </pname>
     <capital idref="c2"/>
     premier> Mike Harris </premier>
  </province>
</provinces>
```

XML Document (cont.)

```
<cities>
  <city id = "c1">
     <cname> Sacramento </cname>
     <state-of idref = "s1">
  </city>
  <city id = "c2">
     <cname> Toronto </cname>
     <pop> 2.5M </pop>
     cprovince-of idref = "p1">
  </city>
</cities>
</north-america>
```

Graph Representation

State of the Art

Data Models

Pioneering work: OEM, LORE/LOREL, UnQL

Data models for XML:XML Schema, DOM, RDF

Query Languages

SS QL's: LOREL, UnQL, ...

XML QL's: XML-QL, XSLT, XQL

- Indexing
- Storage Mappings

What about the links?

Entry for *link* in index of DOTW book:

- •pp. 45-46: XLink and XPointer
- •pp. 189: "If Web data follows the same patterns as Web documents, then we should expect links to become prevalent."

The Web is not just semistructured data: it's autonomous distributed pieces of unstructured, semistructured, and structured data, interconnected by link

Some link-aware projects

- •Strudel (AT&T)
- Tiramisu (Washington)
- Araneus (Rome)
- AutoWeb(Milan)
- •SQUEAL (MIT)
- •COIR (NEC)
- •FLORID (Freiburg)
- WebSQL/WebOQL (Toronto)

WebSQL: Unstructured data + links

- •Integrate Browsing & Searching
- Data Model;

Document (URL, title, type, length, text, modif)

Anchor (base, label, href)

- Query Language: SQL + regexps
- •Semantics:
 - Materialize a fragment of the database
 - Compute the answer on this fragment

Search Automation

• Find documents about Toronto that reside in servers in Canada

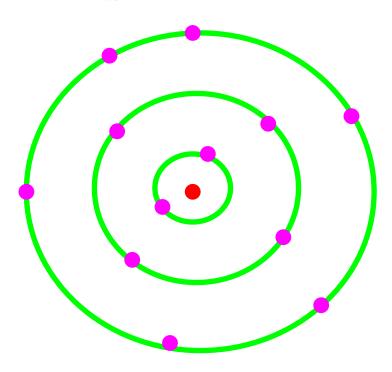
SELECT d.url,d.title
FROM Document d SUCH THAT d MENTIONS "Toronto"
WHERE d.url CONTAINS ".ca\$"

• Find documents about WebSQL that point to U of T

DEFINE INDEX "HotBot";

SELECT d.url

FROM Document d **SUCH THAT** d **MENTIONS** "WebSQL", Anchor a **SUCH THAT** base = d,


WHERE a.href CONTAINS "toronto.edu"

OR a.href CONTAINS "utoronto.ca"

Search and Navigation

• Documents about "excursions" near WWW9 home page

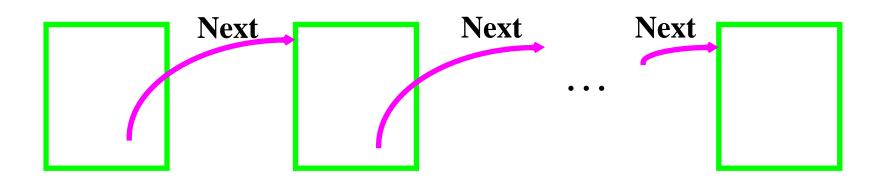
SELECT d.url, d.title
FROM Document d
SUCH THAT "www9.org" (->| ->-> | ->->) d
WHERE d.text CONTAINS "excursions"

Path Regular Expressions

Alphabet (Link types)

```
#> interior link: same document
local link: same server
=> global link: different server
null path
```

Regexps Over Link Types


```
->| => path of length one, either local or global
->* local path of any length
=>->* idem, but in other servers
(->|=>)* the reachable portion of the Web
```

User-Defined Link Types

DEFINE LINK [next] **AS** label **CONTAINS** "Next";

SELECT d.url **FROM** Document d

SUCH THAT "http://the.starting.document" [next]* d, WHERE d.title CONTAINS "Canada";

Example applications

Indexing an On-line Manual

Indexing Publication List

Index of Online Publications

•Need pairs <URL of .ps, Metadata>

Internet

Alberto Mendelzon and Tova Milo, Formal Models of the Web, to appear in *Proc. PODS'97, Tucson, May 1997.*

Gustavo Arocena, Alberto Mendelzon, George Mihaila, **Applications** of a Web Query Language, to appear in *Proc.6th Int'l. WWW Conf.*, Santa Clara, April 1997.

Alberto Mendelzon, George Mihaila, Tova Milo, Querying the World Wide Web, in *Proc. PDIS'96, Miami, December 1996.*

SELECT a.href, a.label
FROM Anchor a
SUCH THAT base = "http://www.cs.utoronto.ca/~mendel/papers.html"

A (partial) list of publications

- S. Abiteboul, S. Cluet, T. Milo, <u>A Database Interface for Files</u>
 <u>Update</u>. Proc. ACM SIGMOD Int. Conf. on Management of E
 1995 San Jose, May 1995.
- Y. Afek and G. Stupp, <u>Synchronization power depends on the register size</u>. In *Proc. of the 34th Ann. IEEE Symp. on Foundations of Computer Science*, pages 196–205, November 1993.
- Y. Afek and G. Stupp, <u>Delimiting the power of bounded size</u> <u>synchronization objects.</u> In *Proc. of the 13th Ann. ACM Symp Principles of Distributed Computing*, pages 42–51, August 19
- Y. Afek, D. Dauber, and D. Touitou, <u>Wait-free Made Fast.</u> In

DEFINE CONTEXT BEGIN = $\langle LI \rangle$, **END** = $\langle LI \rangle$;

SELECT e.href, e.context

FROM Anchor e SUCH THAT

base = "http://www.math.tau.ac.il/~milo/dept/papers.html" WHERE e.href CONTAINS ".ps"

Adding Structure to Unstructured Data (140K)

Peter Buneman, Susan Davidson, Mary Fernandez and Dan Suclu Technical Report MS-CIS-96-21, CIS Department, University of Pennsylvania. See here for the abstract.

A Query Language and Optimization Techniques for Unstructured Data (144K) Peter Buneman, Susan Davidson, Gerd Hillebrand and Dan Suclu Technical Report MS-CIS-96-09, CIS Department, University of Pennsylvania. An extended abstract of this work appears in SIGMOD Proceedings, 1996. See here for the abstract.

A Query Language for Multidimensional Arrays: Design, Implementation, and Optimization Techniques (87K)

Leonid Libkin, Rona Machlin and Limsoon Wong

SIGMOD Proceedings, 1996.

See here for the abstract.

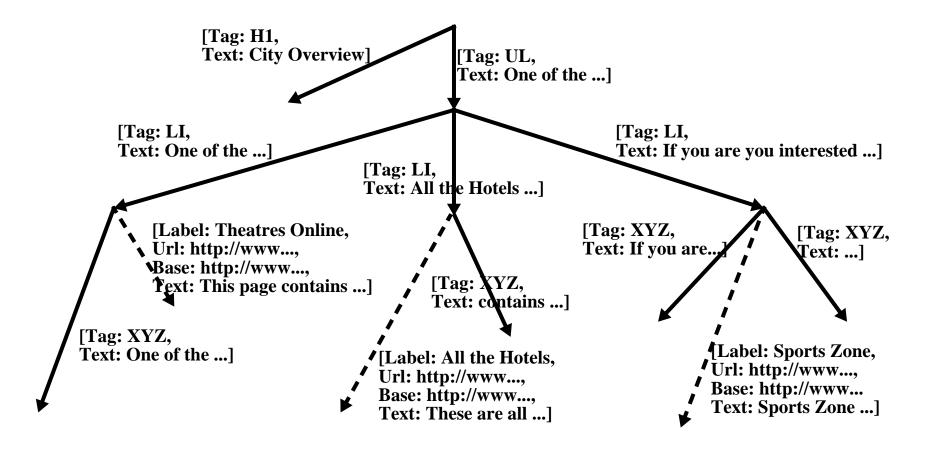
DEFINE LINK [here] **AS** label **CONTAINS** "here" **SELECT** e.url, d.text FROM Document d SUCH THAT

"http://www.cis.upenn.edu/~db/langs/allpapers.html" [here] d, d [here] e;

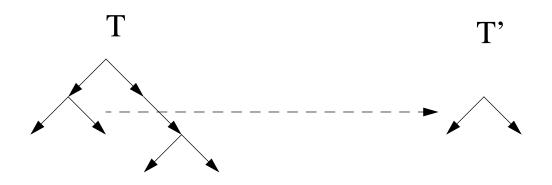
Programmatic Interface

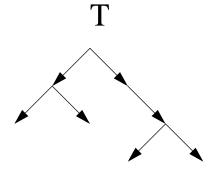
```
public static void main(String args[]) {
  String query = "SELECT x.url, x.title, x.length, x.date "+
  " FROM Document x SUCH THAT x MENTIONS\"Java\";";
  try{
     WebSQLServer eng = new WebSQLServer(query, new Mon());
     for (Enumeration e = eng.elements();
e.hasMoreElements(); ) {
        Vector tuple = (Vector) e.nextElement();
        for (int i = 0; i < eng.tupleSize; i++) {
          System.out.print(tuple.elementAt(i));
          System.out.print(" ");
        System.out.println();
  }catch(Exception e){System.out.println("Couldn't create
server.");}
```

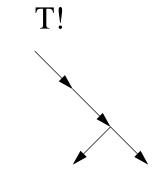
WebOQL: semistructured data + links

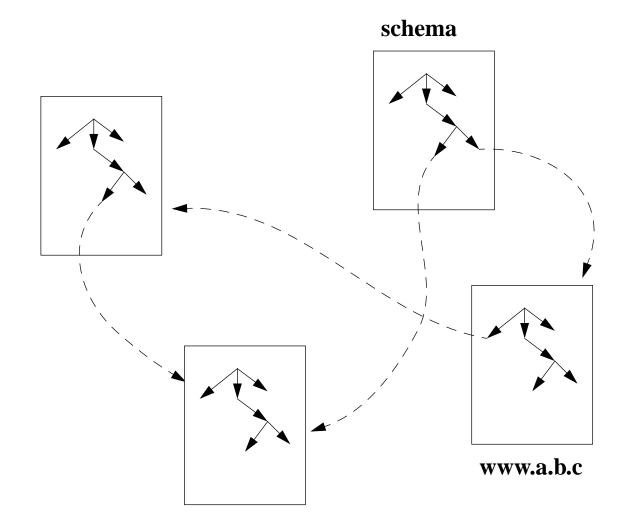

- WebSQL: Web as graph of atomic objects
- •WebOQL: Web as graph of structured objects
- •Query:
 - •the Web
 - a single page
 - a set of related pages
- •Restructure:
 - HTML to HTML
 - HTML to databases
 - Databases to HTML

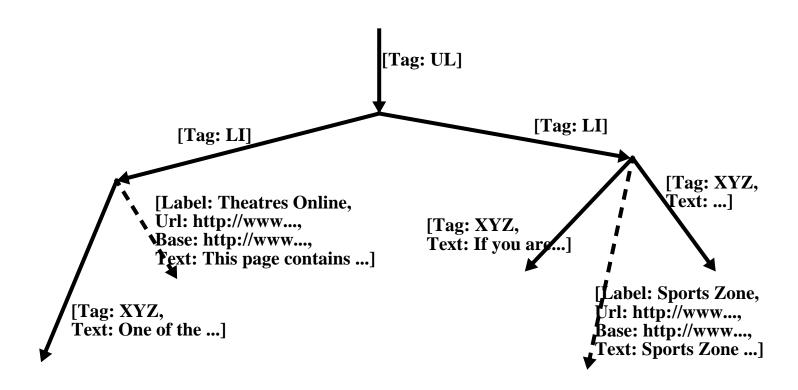
City Overview


- One of the most attractive aspects of our city is the variety of cultural activities. You can purchase tickets for several theatres from Theatres Online.
- All the hotels on the Web provide discounts to cyber-clients!
- If you are interested in live sports, then you must visit Sports Zone. You can also buy tickets from them.


Data Model

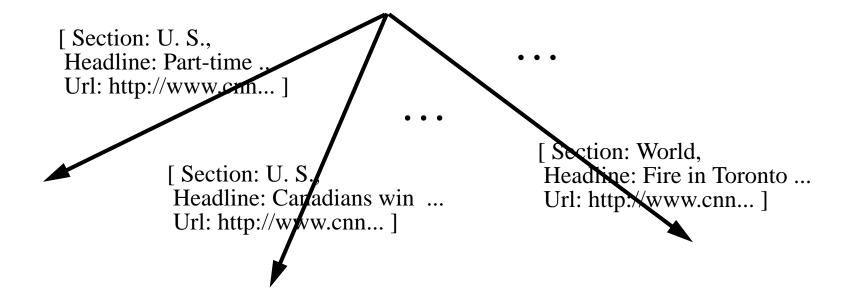

- Records as Labels on Arcs
- Internal and External Arcs


Tree operators



Webs

Query: list elements containing "ticket"



CNN Home page

Extracting CNN's Headlines

```
select [Section:Y.text, Headline:z.text, Url:z'.url]
from X in "http://www.cnn.com" via ^*[text ~ "T O P"],
        Y in X!!!' via ^*[tag = "blockquote"],
        z in Y!'
```


Restructuring the Result into HTML

```
[Tag:"table"/
 [Tag:"th", Text:"Section"] + [Tag:"th", Text:"Headline"] + [Tag:"th", Text:"Url"]+
 select [Tag:"tr"/ [Tag:"td", Text:Y.text] + [Tag:"td", Text:z.text] +
                        [Tag:"td"/ [Label:z'.url, Url:z'.url]]
         X in "http://www.cnn.com" via ^*[text ~ "T O P"],
          Y in X!!!' via ^*[tag = "blockquote"], z in Y!'
                                  [ Tag: table ]
    [Tag: th.
    Text: Section 1
 [Tag: th,
                            [Tag: td,
                                               Tag: td ]
  Text: Headline
                            Text: U
                                    Tag: td,
```

Text: Part-time ...]

[Label: http://www.cnn..., Url: http://www.cnn...]

[Tag: th,

Text: Url

Generating a new Web

Table = [previous query]

select [y'] as y.Text
from x in Table'!!!, y in x

creates one page for each Section, with the Section name as URL

Easy to do in WebOQL

Extract all headings

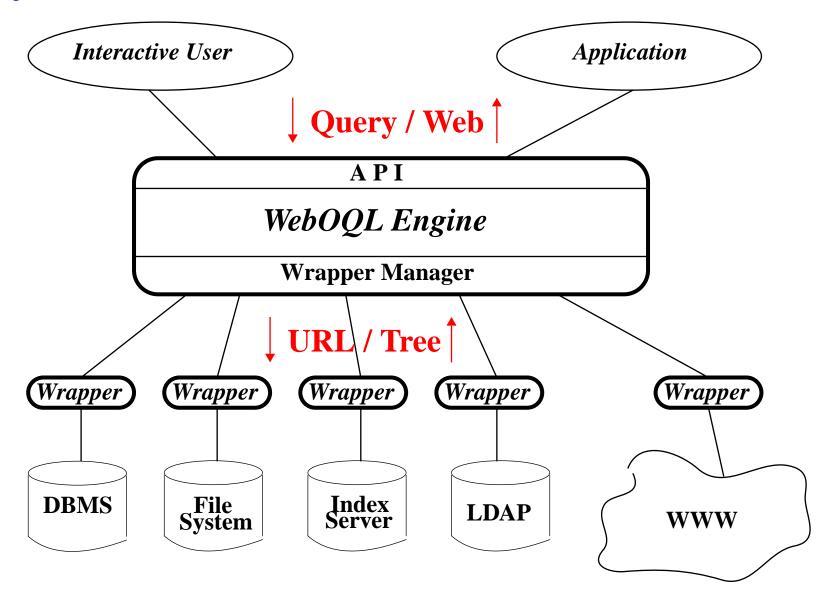
Extract all images

Linearize page hierarchy

Flatten hierarchy into table

Create Web views

Extract pictures of faculty


```
SCAN
"http://www.cs.toronto.edu/DCS/People/Faculty/index.html"
USING
    ANY
    <BODY>
        MANY
        <UL>
            {<LI> <A HREF = MemberPage> MemberName </A> </LI>}
        </UL>
    </BODY>
AND
   MemberPage
USING
    ...<IMG SRC = Jpg ".jpg$">
GIVING
  <HTML>
      <TABLE>
         {<TR>
             <TD> text(MemberName) </TD>
             \langle TD \rangle \langle IMG SRC = Jpq \rangle \langle TD \rangle
         </TR>}
      </TABLE>
 </HTML>
```

Generated WebOQL

```
[Taq:"html"/
  [Taq:"table"/
    select [Tag:"tr"/
             [Taq:"td"/[Text:MemberName.text]] +
             [Taq:"td"/[Src:Jpq.src, Taq:"imq"]]
    from V__ is "http://www/DCS/People/Faculty/index.html",
         V 0 in V !' via [Tag = "ul"] until true,
         V 1 in V 0',
         MemberName is V 1'&,
         MemberPage is MemberName,
         V 2 in browse(MemberPage.url)
             via ^*[Src \sim ".jpq$" and Taq = "imq"],
         Jpq is V 2&
    where V__!.Tag = "body" and V_1.Tag = "li" and
MemberName.Tag =
"a"
];
```

```
<!-- Generated by WebOQL 1.0 -->
<html>
 T.S. Abdelrahman, MSc, PhD
    SRC="http://www.cs.toronto.edu/gifs/Faculty/
      <IMG
tsa.jpg">
    >
R.M. Baecker, MSc, PhD
    <IMG SRC="http://www.cs.toronto.edu/gifs/Faculty/</pre>
rmb.jpg">
    A. Bonner, MSc, PhD (Erin) ...
```

System Architecture

Computing Page Reputations

(Rafiei and Mendelzon, WWW9)

- How do we rank a large number of pages relevant to a query, so the *good* ones appear first? (search engine company's problem)
- Given a page and a topic, how *good* is this page on this topic? (tenure committee's problem)
- Given a page (or a site), what topics is this page *good* on? (webmaster's problem)
- Good means reputable, authoritative, well-known, up-to-date,...

Idea:

• Analyze links to compute Rank(p,t) = goodness of page p on t

Page Rank

(Brin and Page 1998, Google; Geller 1978 in bibliometrics)

A page is good if lots of good pages point to it.

One level random walk model:

At each step:

- with prob p>0 jump to a random page, or
- with prob (1-p) follow a random link from the current page

Page Rank of page p = probability, in the limit, of hitting page p

Problems with PageRank

 topic- independent: a page may be good for one topic but not another

•good pages may not point to each other: BMW does not point to Mercedes

Hubs and Authorities

(Kleinberg, 1998)

Given a set of pages relevant to topic t:

A page is a good hub for t if it points to good authorities on t

A page is a good authority on t if good hubs for t point to it

Algorithm to find authorities on t:

- Issue the query t to a search engine
- Take the first N answers, add pages at distance 1
- Compute authorities for t within this set

A two-level random walk model

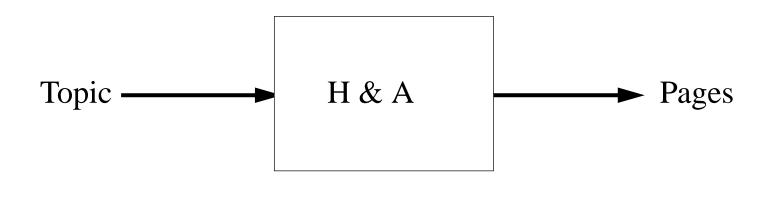
- with prob d>0 jump to random page that contains term t
- with prob (1-d) follow random link **forward/backward** from the current page, alternating directions

Pages accumulate

- forward visits
- backward visits

- •A(p,t) = probability of a forward visit to page p when searching for term t = Authority rank of page p on term t
- • $\mathbf{H}(\mathbf{p,t})$ = probability of a backward visit to page p when searching for term $t = \mathbf{Hub} \ \mathbf{rank}$ of page p on term t

Theorem If d>0, the two-level random walk has unique stationary probability distributions A(p,t) and H(p,t).


(Does this model Kleinberg's algorithm?

No: See Lempel and Moran, WWW9, Borodin et al, WWW10)

Does Hubs&Authorities solve our ranking problems?

- Search engine problem: yes
- •Tenure committee's problem: maybe
- •Webmaster's problem: no

Inverting H&A computation

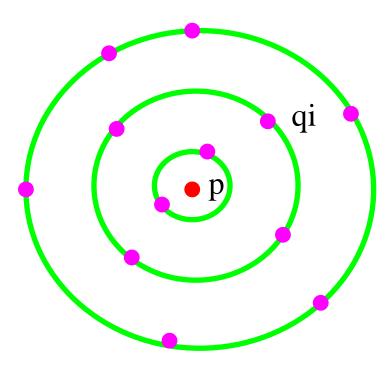
Two Solutions

- Global solution: a large crawl of the web is available. Find authorities on each term t
- •Local solution: approximate the global solution by starting with some set of pages and the terms that appear in them, and iteratively expanding this set

Global Solution (bottom up)

For every page p and term t

$$A(p, t) = H(p, t) = \frac{1}{2N_t}$$
, if t appears in p
 $A(p, t) = H(p, t) = 0$ otherwise.


While changes occur

$$A(p,t) = (1-d) \sum_{q \to p} \frac{H(q,t)}{Out(q)} + \begin{cases} \frac{d}{2N_t} & \text{if t appears in page p;} \\ 0 & \text{otherwise} \end{cases}$$

$$H(p,t) = (1-d) \sum_{p \to q} \frac{A(q,t)}{In(q)} + \begin{cases} \frac{d}{2N_t} & \text{if t appears in page p} \\ 0 & \end{cases}$$

Local Solution: (top down)

Set of pages:

Set of terms: all terms t that appear in p or some of the qi's

Local algorithm (Using the one-level model for simplicity)

$$R(p, t) = \frac{d}{N_t}$$
For $i = 1, 2, ..., k$

For each path $q_1 \rightarrow q_2 \rightarrow ... \rightarrow q_i \rightarrow p$,

For each term t in page q_1

$$R(p,t) = R(p,t) + \left(\frac{(1-d)^{i}}{\prod_{j=1}^{i} Out(q_{i})}\right) \frac{d}{N_{t}}$$

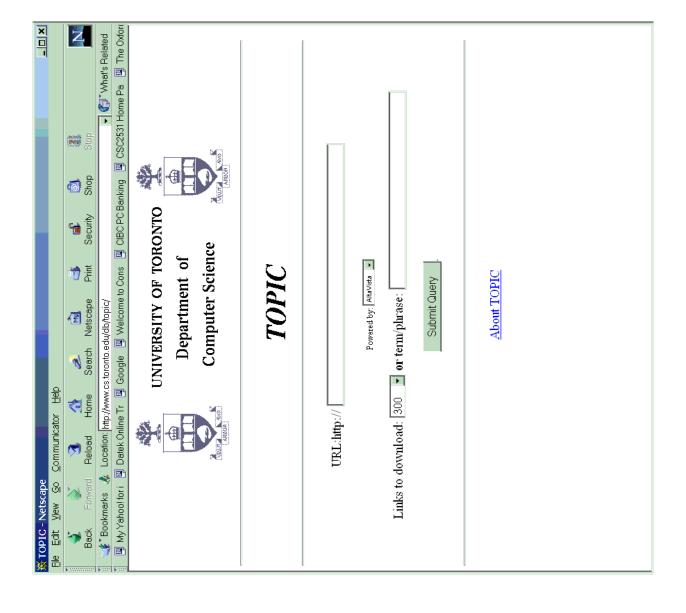
TOPIC: Approximating the local algorithm

- •Given page p
 - Find 500 pages q that link to p (using Altavista)
 - From each q "snippet," extract all terms t
 - Remove internal links and duplicate snippets
 - Remove stop words and rare terms
 - Apply the local algorithm with d = 0.10, k = 1, Out(q) = 7.2

Penetration and Focus

(Mendelzon and Rafiei, IEEE Bull. Data Eng., 2000)

For d and Out(q) constant, the local algorithm reduces to


$$R(p,t) \sim I(p,t) / N_t$$

where I(p,t) = number of pages that contain t and point to p, N_t = number of pages that contain t

R(p,t) = fraction of pages on t that point to p: *penetration* of page p on topic t

Can also define

F(p,t) = fraction of pages pointing to p that are about p: *focus* of page p on topic t

Example: authorities on (+censorship +net)

www.eff.org

Anti-censorship, Join the Blue Ribbon, Blue Ribbon Campaign, Electronic Frontier Foundation

www.cdt.org

Center for Democracy and Technology, Communications Decency Act, Censorship, Free Speech, Blue Ribbon

www.aclu.org

ACLU, American Civil Liberties Union, Communications Decency Act

Example: Personal Home Pages

•www.w3.org/People/Berners-Lee

History of the Internet, Tim Berners-Lee, Internet History, W3C

www-db.stanford.edu/~ullman

Jeffrey D. Ullman, Database Systems, Data Mining, Programming Languages

Examples: Institutional Home Pages

•www.db-stanford.edu:

Database research, data warehousing, database systems, data mining, Stanford

•www.almaden.ibm.com:

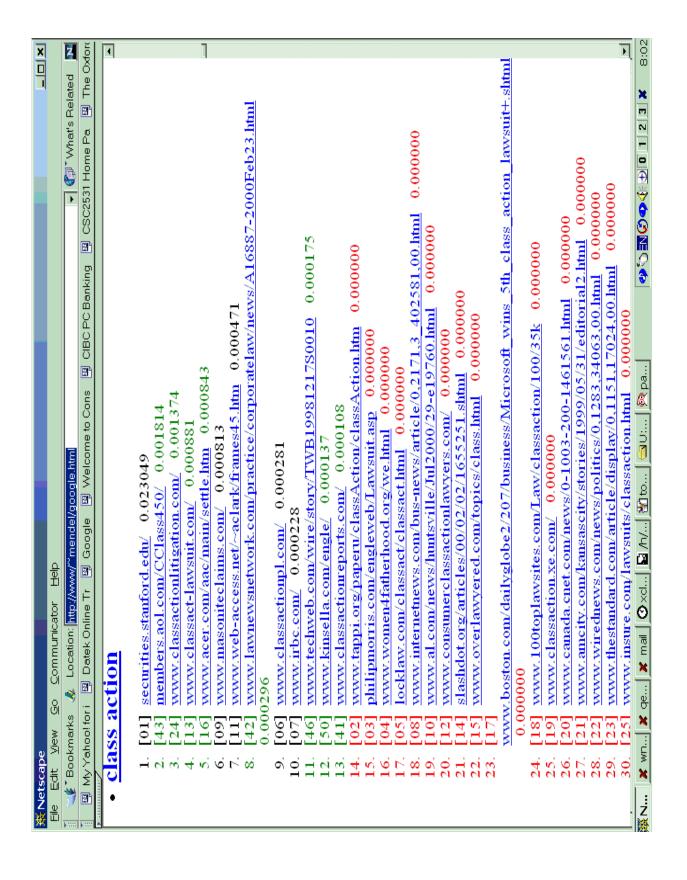
IBM Almaden, search engines, data mining, microscopy, visualization

Examples: Canadian CS Departments

•www.cs.toronto.edu:

Women hockey, computer vision, department of Computer Science, University of Toronto, archive, Russian

•www.cs.ualberta.ca:


University of Alberta, virtual reality, chess, language, artificial

•www.cs.ubc.ca:

confocal, periodic table, anime, Computer Science, manga, Mathematics

TOPIC as search engine ranking method

- •Given query t, rank answer pages p by R(p,t)
- •Experiment: 467 queries obtained from major search engine company. For each query, rerank top 100 engine hits by TOPIC ranking
- •Evaluation with human subjects in progress by FIS (Keast et al, ACM/IEEE DL Conf., 2001)

Limitations

- Topics vs. terms
- •Search engines provide non-random samples
- •All links are equal
- •Some topics not well-represented on the Web

Current Work

- •Implementing the global algorithm (UofA, using Internet Archive snapshot)
- Incorporating TOPIC rank into search engine
- •Evaluation of TOPIC as search engine rank function

Summary

- •Unstructured data + links: WebSQL
- •Semistructured data + links: WebOQL
- •Exploiting links for reputation ranking: *TOPIC*