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Abstract 
DBMS as an I/O-intensive software has been focused on how to efficiently make use of 

cache, main memory, and disk storage based on the observation of their bandwidths in the 

memory hierarchy. In the past decade, Distributed Database Management Systems (DDBMS) has 

introduced computer network as another kind of data I/O media. Traditionally, computer networks 

were put on a lower layer than disk storage in the hierarchy. With the advent of broadband high-

speed network and lightweight (low overhead) protocols, computer networks could have higher 

bandwidth than hard disk. How to reflect this fundamental change on the DDBMS or even 

traditional centralized DBMS architecture remains open. In this report, I shall survey the current 

status of high-speed networks especially gigabit/gigabyte networks, and the low overhead 

protocols and architecture. Introductions to Fibre Channel and Infiniband hardware architectures 

are included as the two major parts. Different approaches for incorporating high-speed network 

infrastructure to operating systems and high level network protocols are also introduced. At last, 

we give an analysis how we can incorporation application level protocols to DDBMS. 

 

1. Introduction 

1.1. Background and Motivation 

 

The DBMS, as an I/O-intensive software, has largely been affected by the 

performance of its underlying hardware and operating system. The optimization of 

centralized database systems has been based on the observation that the speed of cache is 

about an order of magnitude faster than main memory and main memory is about an 



order of magnitude faster than the disk storage [19]. Many cache-conscious main 

memory based algorithms and main memory conscious disk-based algorithms are 

developed to get better performance by getting data more close to the CPU. This has been 

proved to be a very effective way to manage data [20]. In Distributed Database 

Management Systems (DDBMS), our previous assumption was that the network was the 

bottleneck of the throughputs, so all the methodologies for query optimization and 

transaction management are to minimize the network communication, i.e. localize the 

computation as far as possible. But this assumption may not still hold for current 

hardware platforms. 

The fundamental architecture of database systems has been around for nearly twenty 

years. In the last two decades, Moore’s law operates on the hardware development -- 

CPU is getting faster, disk is getting bigger, and there are breakthroughs in long-dormant 

communication speeds. All of those have been changed and will change the architecture 

of DBMS, as well as DDBMS. In particular, the broadband high-speed networks will 

invalidate some of the previous assumptions of DDBMS, thus makes it necessary to 

redesign the architecture of next generation DDBMS. With current success of 

gigabit/gigabyte networks, network communication may not be the bottleneck any longer. 

Moreover high performance networks could be even faster than high performance local 

disk (for comparison, the Ultra-3 SCSI interface has a maximum of 160 MB/sec 

throughput, while Myrinet can achieve more than 200 MB/sec throughput with TCP/IP 

protocols). This implies that transferring data from the main memory of a remote host 

may be more efficient that loading data from local disks. If this is the case, what data 

structures, algorithms, and utilities of distributed database system have to be modified to 

adapt to the new changes? To answer this question, we have to see what have been done 

in the broadband and high-speed network infrastructure and what high performance 

communication services have available.  

In the operating system, all the software components (network interface card drivers, 

implementation of protocols stacks, and etc.) related to network communication are 

called network subsystem. When two application programs want to communicate to each 

other, it is more complicated than simply sending a message from one host to another. To 

hide the complexity of underlying networks, the network subsystem of an operating 



system usually provides some common services to the upper layer application programs. 

Since the needs of the application programs vary depending on their specific 

requirements, the common services may not be best suitable for the application program. 

For example, for Distributed Database Systems, the basic operations consist of distribute 

query processing, distribute transaction management, and distributed storage 

management. To be more specific, a DDBMS may have a distributed sorting algorithm 

that relies on the underlying network subsystem. The effectiveness and performance of 

this distributed sorting algorithm depends largely on what kind of common services and 

what the service quality the network subsystem provides. Another example is that the 

two-phase-commit distributed concurrency control protocol requires asynchronous 

message sending service (one of the most common services provided by the network 

subsystem). It is proved that two-phase-commit protocol cannot guarantee the global “all-

or-nothing” property of transaction using asynchronous message passing. Hence, the 

network subsystem not only affects the performance of the upper level applications but 

also determines their functions and architecture. Based on this observation, it is crucial to 

understand what new network architecture and services have been provided to the high 

level application programs, so that we have the right baseline when we try to design new 

algorithms and architectures for the upper level DDBMS.  

 

1.2. Scope of This Survey 

 

In this report, I shall concentrate on the broadband, high-speed network infrastructure 

and the consequential changes on the operating systems and protocols to incorporate this 

infrastructure. However, I shall not dig too deep into physical level. All that detailed 

information can be found in referenced papers or specifications. What covered in this 

report are the architecture of the network or I/O system, and the corresponding 

lightweight protocols making the high-performance networks a reality. To be specific, we 

want to answer the following questions: 

• What are the state-of-art broadband and high-speed networks? 

• What components constitute these networks? 



• What protocols and OS level modifications have been made to facilitate the new 

architecture? 

• What end-to-end communication protocols have been adaptive to the changes? 

• What the DDBMS can do with these changes in the author’s point of view? 

Since the hardware and network communities have been evolving very fast in the last 

decade, we may not include all the up-to-date technologies in this survey. I apologies for 

not being comprehensive, but because of the time bound, it is the best I have known. 

Although, high-speed network seems to be a right breakthrough for distributed 

database systems, one must keeps in mind that some theoretical results are still valid. Due 

to the autonomy property of distributed database systems, the fundamental distributed 

assumption has remained unchanged, that is the limitation of local knowledge in a 

distributed system. Some distributed problems remain intractable no matter how fast the 

underlying network transmits data. For example, the distributed commit problem cannot 

be solved in asynchronous setting regardless the speed of network [22]. How to solve this 

kind of problems in synchronous and semi-synchronous networks is not in the scope of 

this report.  

Another thought of distributed database systems on top of high-speed network is that 

it has much similarity with shared-nothing parallel database systems. It is natural to adopt 

the parallel algorithms used in parallel database to distributed database systems built on 

top of high performance networks. To some extent, the new generation distributed 

database system incorporating high-speed network is some kind of combination of 

parallel database system and traditional distributed database system, in that it manages 

data across high-speed network using parallel algorithms in order to get high degree of 

parallelism, and manages data on slow networks using traditional distributed algorithms. 

The parallel databases are beyond the scope of this paper. DeWitt and Gray gave an 

excellent overview on parallel database systems in [23]. 

 

1.3. Organization of this survey 

 

The organization of this report is as follows: 



• Section 2 presents the current achievements on the hardware of broadband and 

high-speed networks, focusing on gigabit local area networks. These 

architectures include Fibre Channel and Infiniband. 

• Section 3 investigates the software changes in order to exploit high-speed 

network hardware. This includes the operating system changes, lightweight 

communication protocols, and higher layer protocols that provide high-speed 

communication services to the application level. 

• Section 4 discusses (in the point of view of the author’s) the possible impacts 

on Distributed Database Systems due to the broadband and high-speed 

network infrastructure.  

• Section 5 contains conclusion and summary of this report, and proposes 

interesting problems for future research. 

 

 

2. Broadband and High-Speed Network 

 

 

The network subsystems can be categorized into three major areas: the hardware 

architecture of the host, the host software system, and the network interface. Some of the 

issues related to the components are: 

1. Hardware component: DMA vs. Programmable I/O (PIO) for moving data 

between host memory to network interface. This will be discussed in section 

2.2. 

2. Host software: OS, API, high level protocol processes, and the device driver 

for the network interface. This will be discussed in section 3. 

3. Network interface: programmable network interface; high performance 

protocol support; on-board protocol processing to improve communication 

performance. This will be discussed in section 2.2 and section 3. 

In section 2.1, we first clarify some concepts related to broadband and high-speed 

networks.  



 

2.1. Introduction to Broadband and High-Speed Network  

 

Network performance is determined by two parameters: bandwidth (a.k.a. 

throughput) and latency (a.k.a. delay). The bandwidth of a network is defined by the 

number of bits that can be transmitted over the network in a certain period of time. So if a 

bandwidth of a network is higher, the time needed to transfer one bit is shorter. The 

second performance metric, latency, corresponds to how long it takes a message (or a bit) 

to travel from one end of a network to the other. Latency is measured strictly by time 

(usually seconds). We often think of latency as having three components: 

1) The speed-of- light propagation delay. This delay cannot be changed for any 

kind of network, although the speed of light may be slightly different in 

different transmission media.  

2) The amount of time it takes to transfer a unit of data. This is a function of the 

network bandwidth and the size of the packet in which the data is carried.  

3) There may be queue delays inside the network, since packet switches generally 

need to store packets for some time before forwarding them on an outbound 

link.  

Based on the three kinds of time consumption in data transferring in a switched 

network, we would define the total latency as: 

• otpl TTTT ++=   where lT  stands for latency, pT  stands for propagation time, tT  

stands for transmission time, and oT  stands for protocol overhead 

in transmission. 

• 
c
d

Tp =   where d stands for distance between the source and destination, c 

stands for the speed of light. 

• 
w
s

Tt =   where s stands for size of message, w stands for bandwidth. 

 

The bandwidths available on today’s networks are increasing at a dramatic rate, but 

the speed of light does not change. So “high-speed” does not mean that latency improves 



at the same rate as bandwidth; the transcontinental “round trip time” (RTT) of a 1-Gbps 

link is the same 100 ms as it is for a 1-Mbps link. Here, the meaning of “high-speed” is 

twofold. Firstly, high-speed network is usually broadband network. When you want to 

transfer large amount of data, the transmission time tT  dominates the latency. So, broader 

bandwidth networks have less transmission time, hence the total latency is reduced. The 

second implication of a high-speed network is that its physical media is usually optical 

fiber, which enables long distance transmission of light without being reinforced by 

repeaters. This will eliminate significant overhead when the source and destination hosts 

are far apart.  

We can see that latency and bandwidth are two different metrics although they are 

somehow related. Some applications are latency dominated, while some are bandwidth 

dominated. For example, interactive programs (such as telnet) are latency dominated, but 

some programs involving large amount of data transfer are bandwidth dominated, such as 

ftp. So in Distributed Database Systems, which part will be affected by the high-speed, 

broadband network is to be determined. Basically, if a DDBMS uses query shipping, the 

size of data transfer is usually not large, so it should be latency dominated. On the other 

hand, in most cases data shipping DDBMS will be bandwidth dominated. So for query 

shipping DDBMS, broadband networks do not help much as to data shipping. 

Another thing need to be clarified is that the bandwidth gotten from application level 

is much less (
4
1

 ~ 
10
1

) than that in the “raw” network level. The major cause of this poor 

performance was the interaction required between the host and the network operations. 

Optimizations could be done in every level of network subsystems. In section 2.2, we 

will introduce network adapter and the optimizations on this level. In section 3, software 

level optimizations are introduced. 

 

 

2.2. Network Adapter 

 

Another interesting part when it comes to high performance networks is network 

adapter or network interface card (NIC). A lot of research has been done to reduce the 



overhead from the network adapter [12, 13, 14, 15, 17, 18]. A network adapter serves as 

an interface between the host and the network link, so it is on the lowest level of network 

subsystem in the operating system. The network adapter can be divided into two parts: 

the host half and the link half. The host half “talks” to the host via I/O bus, while the link 

half “talks” to the network link media using particular physical layer and data link layer 

protocols. Usually there is small amount of fast memory (such as SRAM) on the network 

adapter to synchronize the I/O bus and network link media since they typically (always) 

run in different frequencies. The diagram Fig. 1 shows the position of network adapter 

between host and network link. 

Adaper

Bus Interface

Link Interface

output
queue

input
queue

Host I/O Bus

Network Link
 

Figure 1 Typical Network Adapter 

There are basically two mechanisms to transfer data between adapter and the host 

memory: direct memory access (DMA) and programmed I/O (PIO). With DMA, the 

adapter directly read/write the host’s memory without any involvement by the host’s 

CPU. The host simply gives the adapter a memory address and the adapter read/write 

data from/to that memory. There is a less powerful CPU in the adapter, so the work 

needed to be done by the adapter should be very simple and quick so that no performance 

penalties will be imposed on the network adapter. With PIO, the host’s CPU is directly 

responsible for transferring data between the adapter and the host’s memory. The adapter 



must maintain a buffer (greater than or equal to the frame size of the network link) to 

allow host’s CPU to copy to and from. In comparison, the adapter only needs a few bytes 

of buffer to stage between the I/O bus and network link with DMA. In this sense, DMA is 

faster than PIO along with its inheriting parallel executing with the host’s CPU. But the 

downside of DMA is that it needs a longer startup time than PIO. So it may be less 

efficient than PIO when the frame is short.  

A typical question facing OS designer is where to allocate a buffer for the data 

transferred. Typically the data is put in the system’s space first and then copied to user’s 

space. This incurs an OS system mode (user mode to system mode) switching and an 

additional memory copy. Both of these two operations can be very expensive when it 

comes to high-performance network systems. Thus the user level bandwidth is typically 

much less than the raw bandwidth of the underlying networks. One solution is to let the 

adapter directly read and write data in the user’s memory. This requires the OS make 

changes not only in the upper level protocols, but also in the lower network adapter level 

as well. Detailed information can be seen in section 3 when we introduce Trapeze project. 

Another problem is that the bandwidth of I/O bus is typically lower than the 

network’s bandwidth. For example, a typical bus might have a 32-bit-wide data path 

running at 25 MHz, giving it a peak transfer rate of 800Mbps. But this peak rate tells us 

almost nothing about the average rate, which may be much lower. Fig. 2 [19] shows the 

comparisons between different storage media in a modern computer system.  

Level 1 2 3 4 
Called Registers Cache Main memory Disk storage 
Typical size <1 KB <4 MB <4 GB >1 GB 
Implementation 
technology 

Custom 
memory with 
multiple ports, 
CMOS or 
BiCMOS 

On-chip or off-
chip CMOS 
SRAM 

CMOS DRAM Magnetic disk 

Access time (in 
ns) 

2-5 3-10 80-400 5,000,000 

Bandwidth (in 
MB/sec) 

4,000-32,000 800-5,000 400-2,000 4-32 

Managed by Compiler Hardware Operating 
System 

Operating 
System/User 

Backed by Cache Main Memory Disk Tape 
Table 1 The typical levels in the memory hierarchy of modern computer systems  



To match up the network bandwidth, researchers have proposed different solutions. A 

promising one is to connect the network interface card with system bus along with main 

memory, not to I/O bus. Thus the network adapter is treated more like main memory. In 

this way, the bandwidths of network link and bus can match better. [15, 17] discussed this 

issue in more details. 

 

2.3. Fibre Channel 

2.3.1. What is Fibre Channel (FC)? 

 

Fibre channel is a standard developed under the ANSI X3T9.3 task group. It is a 

computer communications protocol designed to meet the many requirements related to 

the ever- increasing demand for high performance information transfer. The goals of Fibre 

Channel include:  

• Allowing many well-known existing channels and networking protocols to run 

over the same physical interface and media. 

• High bandwidth (100MB/s and beyond). 

• Flexible topologies. 

• Connectivity over several kilometers. 

• Support for multiple data rates, media types, and connectors. 

In general, Fibre Channel attempts to combine the benefits of both channel and 

network technologies.  

A channel is a closed, direct, structured, and predictable mechanism for transmitting 

data between relatively few entities. Typically, once a channel is set up, there is very little 

decision making needed, thus allowing for a high speed, hardware intensive environment. 

Channels are commonly used to connect peripheral devices such as a disk drive, printer, 

tape drive, etc. Networks, however, are unstructured and unpredictable. Networks are 

able to automatically adjust to changing environments and can support a larger number of 

connected nodes. These factors require that much more decision making take place in 

order to successfully route data from one point to another. Much of this decision-making 

is done by software, making networks inherently slower than channels. 



 Fibre Channel tries to combine these two technologies together to construct a flexible 

I/O architecture based on current high performance communication networks. The high 

flexibility of its interconnection topology and high data rate (up to or exceeding 1 Gbps) 

make it a preferable technology for high performance parallel and distributed computing, 

especially for I/O-intensive computation. To some extents, high performance network 

technologies make the externalizing of I/O peripherals possible. That is the I/O devices 

are not connected to I/O bus on the motherboard, rather they are connected by high 

performance networks and are shared by every machine on the network.  

 

2.3.2. Advantages of Fibre Channel 

 

The features Fibre Channel provides include: 

• Unification of networking and I/O channel data communication: all kinds of I/O can 

be through high-speed network. 

• Bandwidth: the Fibre Channel provides more than 1 Gbps network bandwidth, 

enabling communication between computing devices and I/O devices more efficient.  

• Inexpensive implementation: the 8B/10B encoding used by Fibre Channel makes the 

communication devices inexpensive. Meanwhile, multi-processors based on fast and 

inexpensive microprocessors and cheap storage disks are less expensive than 

mainframe. Fibre Channel provides more total power than their mainframe 

counterparts at a lower price. 

• Low overhead: very low of 1210−  bit error rate achievable using a combination of 

hardware and software achievements. 

• Local control: local operations depends very little on global information, so it can 

achieve better robustness. This is a nice property for distributed computing and 

shared nothing MIMD parallel computing. 

• Flexible topology: physical link topologies can be one of the three: 1) point-to-point 

links. 2) packet-switching network protocols. 3) shared-media loop topologies. The 

three topologies are shown in Fig. 3. In these three topologies, shared-media loop 

(also called arbitrated loop) has become the most dominant Fibre Channel topology, 



but it is also the most complex. It's a cost-effective way of connecting up to 127 ports 

in a single network without the need of a Fabric switch. 

• Flexible transmission service: multiple classes of services are available: 1) dedicated 

bandwidth between Port pairs at full hardware capacity. 2) multiplexed transmission 

with multiple other source or destination Ports, with acknowledgement of reception. 

3) best-effort multiplex datagram transmission with acknowledgement. This is 

suitable for low error rate lower layer networks to achieve more efficient 

transmission. The details of different classes of service will be discussed later in this 

section. With these different kinds of services, different applications can find the 

appropriate service or combine different services to satisfy their requirements.  

• Standard protocol mappings: Fibre Channel has very good compatibility with the 

existing I/O and networking protocols. It provides interfaces to multiple Upper Level 

Protocols such as IP, Ultra-3 SCSI, IPI-3, HIPPI, ESCON, and AAL5 for ATM. 

• Wide industry support: computer vendors, disk driver and adapter manufacturers are 

providing supports for Fibre Channels. The standardization by ANSI is in progress. 
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Figure 2 Physical topology for Fibre Channel networks.  



One of the most promising features of Fibre Channel is its wide range of bandwidths 

and compatibility with old transmission media as well as optic fiber. One of the goals of 

Fibre Channel is to allow HIPPI to map to it. HIPPI is a 100MB/s technology, thus Fibre 

Channel's primary data rate allows for data to travel 100MB/s. This speed is referred to as 

full speed. There also exists half speed, quarter speed, and eighth speed. In addition, 

double and quadruple speeds are defined. The following table illustrates. 

 

Name Bandwidth (MBps) Bandwidth (Mbps) 

eighth speed 12.5 133 

quarter speed 25 266 

half speed 50 531 

full speed 100 1,063 

double speed 200 2,126 

quadruple speed 400 4,252 

Table 2 Bandwidths of Fibre Channel 

Note that the bandwidth in Mbps notation is not 8 times the number of bandwidth in 

MBps. This is because that Fibre channel uses 8B/10B encoding and the frame overhead 

and other overheads are factored in the MBps figures. 

 

2.3.3. Fibre Channel Layers 

 

The Fibre Channel standard can be understood easier if it is broken down into layers 

as it is for networking protocols. Fibre Channel can be divided into five layers: 

1. FC-0: its main functions include signaling, media specifications, and 

receiver/transmitter specifications. It defines the physical media and links with the 

receivers and transmitters. Single-mode, multi-mode fiber, coaxial cable, and 

shielded twisted pair are defined as transmission media. 



2. FC-1: its main functions include 8B/10B encoding and link maintenance. It 

describes an 8B/10B transmission code which bounds the maximum run length of 

a code, maintains DC balance, and provides word alignment. 

3. FC-2: its main functions include frame format, sequence management, exchange 

management, flow control, classes of service, login/logout, topologies, 

segmentation and reassembly. It defines the signaling protocol which includes the 

frame structure and byte sequences.  

4. FC-3 defines a set of services which are common across multiple ports of a node. 

5. FC-4 is the highest level in the standard set. It defines the mapping, between the 

lower levels of the Fibre Channel and other Upper Level Protocols (ULPs) such 

as IPI (Intelligent Peripheral Interface), SCSI (Small Computer System Interface) 

command sets, HIPPI data framing, and IP. 

FC-0 and FC-1 can be thought of as defining the physical layer of the OSI model. FC-

2 is similar to what other protocols define as a Media Access Control (MAC) layer, 

which is typically the lower half of the data link layer. FC-3 is not really a layer at all. It 

is still a largely undefined set of services for devices having more than one port. FC-4 

defines how other well-known higher layer protocols are mapped onto and transmitted 

over Fibre Channel. Thus, one can roughly think of the Fibre Channel layers defining up 

through the Transport layer of the OSI model. 

Three classes of services are offered to users. Class 1 provides dedicated connection 

service. Data frames are delivered to the destination in the same order they are 

transmitted by the source. Both class 2 and class 3 services are connectionless services. 

Class 2 service guarantees notification of delivery or failure to deliver, while class 3 

supports unacknowledged delivery. Class 1 service will be used by applications requiring 

a guaranteed communication bandwidth for a long period of time (e.g., audio or video on-

demand applications). Class 2 will be used by applications where multiple transfers are 

open at one time with frames from the different transfers multiplexed on a single fiber 

(e.g., the client/server model of distributed computing). The messages transferred by 

class 2 service are acknowledged like TCP protocol in the Internet. Class 3 is designed to 

be used for applications like the data link layer of connectionless network protocols such 

as IP or UDP in the Internet. 



Testing in [11] has shown that if the message size is less than 4K, the latency is 

dominated by the FC transmission time. For class 1 service, when the message size is 

greater than 4K, the DMA transfer dominate the latency. For example, for a 3 MB 

message, the DMA operation accounts for 85% of the write latency. The maximum 

available bandwidth for user-level, DMA and FC phases are 3.61, 4.24, and 25.4 MBps 

respectively. DMA operation usually contains delays of physically locking the memory 

pages of the user buffer, preparing the address list, and moving data from main memory 

to the interface. 

For class 2 and 3 services, the maximum transmission size is 128 bytes. Instead of 

using DMA for moving data, PIO is used in class 2 and 3 services. PIO reduces the 

latency of transmitting small messages across the I/O bus. This is because the DMA 

transfer preparation time and page boundary latency are eliminated. In class 2 service, 

since it requires acknowledgement from the remote receiver after physically transmitting 

the message, the FC time is much larger than any other factor (initiation, PIO, and 

completion phases). Class 3 write operation does not have acknowledgement 

requirement, so its FC transmission time is less than class 2 write operation. 

With the processing of standardization of Fibre Channel, more classes of services are 

coming into place. For the current time being, we are not introducing all the classes of 

services. Detailed information can be found in the standard specification published by 

ANSI. 

 

2.4. InfiniBand Architecture (IBA) System Area Network 

2.4.1. What is InfiniBand Architecture? 

 

InfiniBand Architecture has many similarities with Fibre Channel in that both of them 

attempts to externalize the I/O devices onto high performance networks, but InfiniBand 

Architecture could have even higher bandwidth and more sophisticated architecture. IBA 

defines a System Area Network (SAN, sometimes it is called Storage Area Network) for 

connecting multiple I/O devices, I/O platforms and processors. It provides not only data 

communication among I/O devices and platforms, but only management functions. IBA 



SAN encompasses a wider range of I/O platforms than Fibre Channel, managing I/O 

platforms such as RAID, or Fibre Channel itself. Fig. 3 shows the typical architecture of 

InfiniBand. 

 

IBA Fabric

Processor
Node I/O Node

I/O Node

I/O Node

Processor
Node

Router

 

Figure 3 IBA System Area Network 

 

An IBA can be thought of as three kinds of nodes connected by a high performance 

network called IBA fabric. The three kinds of nodes are processor nodes, I/O nodes and 

routers. Each processor node can consists of multiple CPU’s and shared memories. 

Similarly, an I/O node can also be as complex as a RAID system or Fibre Channel. The 

router nodes are used to connect to other subnets. The IBA Fabric consists of switches 

and routers connected by optic fiber. It can be further divided into IBA subnets connected 

by router just as the Internet does. So a general case of the IBA System Area Network is 

that IBA Fabric connects different nodes, which could be processor nodes, I/O nodes or 

routers connecting to other subnets. IBA subnet consists of end nodes, switches, routers 

and subnet manager interconnected by links. For different types of nodes, different 

adapters are used to connect to IBA Fabric. For process nodes, HCA (Host Channel 

Adapter) is used, while TCA (Target Channel Adapter) is used for I/O devices and I/O 

platforms.  

 



2.4.2. Advantages of IBA 

 

The value propositions for InfiniBand Architecture are in the following aspects: 

• Easy of connect: there is only one fabric connection for all host I/O, which 

includes Inter-Process Communication (IPC), storage I/O and network I/O.  

• Scalability: IBA is easy to scale to thousands of nodes per subnet. Subnets can be 

connected by routers to construct an even larger packet-switched network.  

• Performance: CPU-offload hardware support for message queuing, memory 

protection and fabric protocol processing. 

• Reliability, availability and serviceability: the network can achieve reliability by 

redundant paths and/or fabrics, in-board management for connectors, baseboard, 

chassis and power, and error management is handled by layered architecture. 

• Flexibility: IBA can use different topologies for different circumstances. Also it 

can be built on top of optical fiber as well as coaxial copper. Routers can connect 

IBA network to other types of networks such as the Internet. 

In general, InfiniBand Architecture is a scalable hardware platform that can 

encompass wide varieties of computation platforms and storage platforms. Its basic 

architecture is very close to the Internet architecture in that nodes (CPU nodes or I/O 

nodes) are connected by switches to form a subnet, and many subnets can be connected 

by routers to form a larger IBA network. Depending on the capability of the routers, it 

can connect to almost all kinds of communication networks including the Interenet. Thus 

IBA is an open architecture not only for boosting computing and communication power 

within the IBA network, but also for allowing accesses from non-IBA networks. This 

feature makes it very appropriate for parallel and distributed computing.  

 

2.4.3. InfiniBand Architecture Layers 

 

As with Fibre Channel, InfiniBand also provides a layered architecture for 

modularity. Fibre Channel has 5 layers corresponding to the physical layer and data link 

layer in the ISO/OSI reference model. InfiniBand Architecture provides not only physical 



layer and data link layer, but also network layer and transport layer. With these two extra 

layers, it is easy to deal with the problems such as packet routing, message segmentation 

and re-ordering, and networks management. So IBA can inherently be more sophisticated 

than Fibre channel. The five layers in IBA are as follows: 

1. Physical layer: defines how the bits are placed on the wire and defines the 

symbols for framing. The signaling protocol is specified. 

2. Link layer: defines packet format and protocols for packet operations. For 

example, it defines flow control protocols and how packet is routed within a 

subnet between the source and destination. 

3. Network layer: defines protocols for routing packets between subnets. 

4. Transport layer: segments messages that are larger than the Maximum Transfer 

Unit (MTU) in the sender’s side and reorganizes the packets into messages in the 

receiver’s side. 

5. Upper layer protocols: IBA supports any number of upper layer protocols by 

various user consumers. This includes certain management functions such as 

subnet management and subnet services.  
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Figure 4 IBA Layers 



Fig. 4 shows the five layers in InfiniBand Architecture. Consumer at the highest level 

is any program or upper level protocols that request network communication to the lower 

layers. The lower four layers of IBA have the similar functionality as the Internet 

protocol’s physical layer, data link layer, network layer and transport layer in the same 

hierarchy. One can think of it as a variant of Internet protocol on the high performance 

network environment, in which interconnecting devices and protocols as well as the 

nodes are well defined. In fact, the IBA uses IPv6 addressing in the transport layer and 

also support multicast. The upper layer protocols in IBA are an extension of network 

management protocols defined in the application layer in the Internet protocols. Actually 

the upper layer protocols in IBA include the SNMP (Simple Network Management 

Protocol) protocols defined in the Internet protocols. In addition, it also provides services 

such as connection management, baseboard management, I/O device management, 

performance management and others. All of these management protocols ensure that the 

sophisticated networking architecture performs best on top of high-speed network 

infrastructure.  

At the top level of the protocol layers, a consumer can queue up a set of instructions 

that the hardware executes. This facility is referred to as a work queue. Work queues are 

always created in pairs, called Queue Pair (QP), one for send operations and one for 

receive operations. In general, send queue holds instructions that cause data to be 

transferred from this consumer’s memory to another consumer’s memory. And receive 

work queue holds the instructions about where to put the data received from other 

consumers. IBA only defines QP for HCA (interface for processor node), but not for 

TCA (interface for I/O nodes). The QP is the virtual interface that the hardware provides 

to an IBA consumer and it provides a virtual communication port to the consumer. The 

IBA supports at most 242  QP’s per channel adapter, so a host can simultaneously 

communicates with at most 242  other hosts. Each QP provides isolation and protection 

from other QP’s and consumers. Thus QP can be considered as a private resource 

assigned to a consumer. 

There are 5 different classes of transportation services provided to the consumer: 

reliable connection, unreliable connection, reliable datagram, unreliable datagram, and 

RAW datagram. Their semantics are shown in the following table. 



Service Type  Connection 
Oriented 

Acknowledged Transport 

Reliable Connection Yes Yes IBA 
Unreliable Connection Yes Yes IBA 

Reliable Datagram No Yes IBA 
Unreliable Datagram No No IBA 

RAW datagram No No Raw 
Table 3 IBA Service Type 

Each QP is configured for a certain class of service type. Both the source and 

destination QP must be assigned to the same type of service. Each service type has a 

certain set of operations available to the consumer, and requires different initialization 

steps. In addition to the type of services, IBA provides several mechanisms that permit a 

subnet manager to administrate various quality of service.  

Data in different layers are organized in different format and are given different 

names. In Transport Layer, data are organized into messages. The semantics of messages 

could be memory oriented such as read/write in Remote Directed Memory Access 

(RDMA), or channel-oriented operations such as send/receive. When a message is too 

large to be transferred by the Network Layer, the Network Layer segments the messages 

into packets in proper size. Packets are end-to-end fabric data unit to transfer and are 

routable. End-to-end transfer guarantees reliable transport service by acknowledgment 

and sequencing the packets. 

In summary, InfiniBand Architecture is a suitable architecture for high performance 

I/O applications. It can connect wide varieties of computing platforms and I/O platforms 

together to form a reliable and flexible system. The Internet- like architecture enables it to 

exploit current research results of ever growing Internet hardware and software, for 

example IPv6 and multicast. The embedded network management facilities make 

possible the IBA grows as large as it is needed. All of them make it a preferable hardware 

architecture for parallel and distributed I/O-intensive computing. But since it is a very 

new technology, no much research and experiment have been done on top of InfiniBand 

Architecture.  

 

 



3. Software Changes for High-Speed Network 

Subsystems 

 

There are two ways to improve end-to-end bandwidth:  

• using broadband networking technologies such as Fibre Channel and Infiniband.  

• modifying the operating system’s architecture.  

In this section, we will investigate the second way to see what have been done in the 

operating system’s side and the networking protocols  

 

3.1. Changes in Operating System (Tapeze on FreeBSD) 

 

From operating system’s point of view, the network subsystem has two possible ways 

to reduce the overhead imposed by the network interface:  

1. Make I/O devices more peripheral: push I/O devices such as hard disks out on the 

high-speed network, and make them available to every machine on the network. 

This is the strategy realized by Fibre Channle, InfiniBand Architecture and many 

other researchers [5, 6]. 

2. Make high-peed network interface card closer to the CPU: push network interface 

card up to system bus from I/O bus.  

In [17], the authors identified that the key bottleneck for high-speed network is 

network interface due to the low bandwidth of I/O bus and lack of cache of device 

registers on the network interface card. Also the current network interface card is 

designed with an interface similar to a disk’s interface. Most current network interfaces 

require application to use operating system calls. The CPU can only access the on-board 

registers in an in-order and non-speculative way. All these limitations make network 

interface card a bottleneck for the high performance network. The solutions that [17] 

proposed are to:  

1. mapping network interface memory to virtual memory so that accessing network 

interface is the same as accessing memory.  

2. connecting network interface to memory bus instead of I/O bus.  



3. allowing caching network interface registers, out-of-order and speculative access 

to these registers.  

4. removing some side-effects from the API in the Operating System.  

Trapeze project [5, 6] tries to boost the performance of network communication in the 

network protocols level by using lightweight high- level protocols. In the next section, we 

introduce lightweight protocols used in Trapeze project. 

 

 

3.2. Lightweight Network Protocols (lighweight RPC, End-to-End 

Communication, Active Message, Split-C, Fast Message) 

 

There are basically two types of communication between difference processes: 

• Message passing model: processes send messages to one another through 

communication channels. 

• Shared memory model: processes communicate by performing operations on shared 

data structures called objects. Each object has a type associated with it. Each type 

describes the set of operations that can be performed on an object, and the response 

that it should return if it is accessed by one operation at a time. The relationship 

between objects and types are the same relationship between object and class in 

object-oriented programming languages. For example, register type is responsible to 

store values that can be read or written by all processes. The serializable problem 

arises for the objects. 

Remote Procedure Call (RPC) belongs to the second kinds of service. It provides user 

an interface to services provided by remote hosts. Each host can register services it 

provides to a directory server. When a client requests some service, it sends looking up 

queries to the directory server. The directory server will return the host name who 

provides the type of service. The client then sends service requests and parametersto that 

server. Typically, RPC is built on top of transport layer by using reliable/unreliable 

connectionless services (for example UDP). New lightweight variants of RPC have been 

a hot research topic. Trapeze is one of the projects. 



Trapeze was designed primarily to support fast kernel-to-kernel messaging alongside 

conventional TCP/IP networking. Its prototype on TCP/IP is shown in Fig. 5. 
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Figure 5 An view of  Trapeze prototype 

Trapeze is based on Myricom’s Myrinet, which is a cost-effective, high-performance, 

packet-communication and switching technology that is widely used to interconnect 

clusters of workstations, PCs, servers, or single-board computers. Myrinet provides an 

interface for programming on the firmware on the network interface card, so that it is 

extensible for the user to enhance the network interface. Trapeze is based on the custom 

Myrinet firmware and kernel-to-kernel message layer optimized for block I/O traffic. In 

the Trapeze Network Interface Card (NIC) firmware, it enables zero-copy block 

movement, that is, no additional buffers needed in the operating system’s space. Data was 

directly copied to the buffers in user’s space.  

In the prototype shown in Fig. 5, NetRPC is a lightweight RPC built on top of raw 

Trapeze message layer. Trapeze messages are short (128 bytes) control messages with 

optional attached payloads. If there is payload, the host attachés a payload buffer to a 

message by placing its DMA address in a designated field of the message header. 

Although the control message and its payload are transferred in one packet, it is separated 



in the receiver’s side automatically by the firmware. Zero-copy is achieved by 

demultiplexing the payload from the message using an incoming payload table on the 

NIC. In addition, the upper layers also have to complement the zero-copy feature. The 

TCP/IP driver, socket layer and NetRPC share a common pool of aligned network 

payload buffer allocated from virtual memory page frame pool. Therefore, when you 

execute a DMA operation, the driver just hands on the address of this virtual memory 

buffer. The NIC firmware reads from or writes to this buffer. The operating system does 

not need to copy payloads to other virtual memory buffers. All it needs to do is to 

mapping the network payload address to the user space address. Zero-copy feature 

significantly reduces overheads for TCP streams. 

In order to get high performance, Trapeze also employs an adaptive message 

pipelining mechanism to pipeline the DMA transfer on I/O bus and network link. This 

will minimize the latency of I/O block transfers. Another feature of NetRPC is non-

blocking RPC, in which the calling thread or process does not have to wait the return of 

an RPC call. Instead it sets a continuation procedure to be executed when the remote 

procedure reply arrives. Non-blocking RPC is a simple extension of kernel facilities 

already in place for asynchronous I/O on disks (select/poll system calls on Unix).  

The Slice built on top of NetRPC is a block I/O service. It is called “network storage” 

in that it is built on a collection of PCs that share disk storage. It is different from 

traditional file server and System Area Network (SAN), but something “in-between”. On 

top of Slice and NFS, the operating system also provides file or virtual memory (VM) 

interfaces to the application programs. The application programs can just call a system 

call (open/read/write) to access the file or mapping some I/O devices to some virtual 

memory and directly access that memory. Both mechanisms take advantages of the high 

performance block I/O done by the Trapeze message layer. 

In addition to Trapeze, there are many other approaches trying to connect the low-

speed Internet with the high performance network [7, 8, 14]. Their common idea is to 

place a software router between the low-speed and high-speed network. The router 

switches packets from the low-speed network to the high-speed network by extracting its 

payload and then adding new headers. Zero-copy can be achieved from the router to the 



host on the high-speed network. On the other way, from high-speed network to the low-

speed network, the router does the reverse thing.  

 

 

4. High-Speed Network Impact on Distributed Database 

Systems 

 

 

Based on the discussion above, we have seen the major improvements on the 

hardware architecture and protocols for high-speed networks. It is time to think wha t they 

can do for distribute database or parallel database systems. It is obvious that broadband, 

high-speed network architectures such as Fibre Channel and InfiniBand can be 

automatically applied to shared-disk parallel database system. But since shared-memory 

and shared-disk parallel databases are not as promising as shared-nothing parallel 

databases anymore [23], we are more interested in the impact of broadband high-speed 

networks on shared-nothing or distributed database systems. When network speed gets 

faster and bandwidth get higher, distributed database systems can be thought of as a 

shared-nothing parallel database system in some sense. Technologies used in shared-

nothing parallel databases can be automatically used to distributed database systems. In 

the shared-nothing parallel database systems, one obvious problem is how to place data. 

In traditional distributed database systems, tables can be partitioned either horizontally or 

vertically. Once the partitioning is done, little should be changed unt il the next run of 

partition. This is based on the assumption that network bandwidth is low. So we had 

better reduce data transmission and localize the work. However, in the shared-nothing 

parallel database system, data can be partitioning using many mechanisms. [23] 

introduced three ways: range partitioning which is the same as horizontal partitioning, 

round-robin partitioning which is also a kind of horizontal partitioning but is not based on 

some semantics, and hashing partitioning in which the placement of each tuple is 

determined by a hashing function. I believe there are many more ways of partitioning 

tables. Data placement issue should be one of the interests of future research. 



Another major technical problem for parallel database system is how to make 

relational operators run in more parallel. Distributed databases based on high 

performance networks should also take steps in this direction. There are two types of 

parallelisms that can be exploited by database systems: pipelined parallelism and 

partitioned parallelism. The former can be achieved by streaming the output of one 

operator into the input of another operator such that the two operators can work in series. 

The latter can be achieved by partitioning the input data among multiple processors and 

memories. An operator can usually be divided into multiple sub-operators and execute in 

parallel. Distributed database systems should use some parallelism ideas of parallel 

databases to exploit the faster network infrastructure. 

Although distributed database systems can borrow some ideas from parallel database 

systems in the environment of high-speed network, the low-speed network is still a 

possibility for general purposed distributed database systems. Moreover, many 

difficulties of distributed database systems come from the autonomy nature (or local 

knowledge) of distributed systems, not the network speed or bandwidth. Distributed 

algorithm theories for typical database problems (for example, distributed transaction 

management and query optimization) need more investigation. This should definitely be 

one of the future research areas in distributed database systems. 

With more and more information being put onto the Web, no list of research areas 

would be complete without mentioning the Web. The new fundamentals here are long 

response time (but maybe with high bandwidth), autonomy, heterogeneity, and security. 

For long response time, we need to understand when and how to cache information and 

how to validate or invalidate it. To cope with autonomy requires cooperative, non-

intrusive protocols that Web sites will want to sign up for. Security for distributed 

systems has long been a ``black hole,'' and the Web makes its solution more pressing. 

With the Internet backbone getting faster and faster, a tremendously huge highly 

distributed heterogeneous database system has been generated. Managing these data are 

extremely difficult and should be the future research of all database community. 

 

 



5. Conclusion and Future Works 

 

 

In this report, I have introduced the hardware and software progress to broadband 

high-speed network systems. Two major hardware architectures are introduced – Fibre 

Channel and InfiniBand Architecture. Both of them are trying to push the I/O devices out 

onto high performance networks. Protocols similar to the Internet protocols are developed 

for communication within these architectures and connecting them to the outside world. 

Based on this new hardware architecture, some high level lightweight (low overhead) 

protocols are also developed to achieve high bandwidth in the user level. Lightweight 

RPC is such a typical protocol that allows transmitting messages quickly. Operating 

systems should also be adapted to the high bandwidth to eliminate copying overhead. 

Zero-copy is one of these mechanisms. 

Distributed database systems are very complex system. Figuring out what problems in 

the distributed systems can be solved and what cannot be solved remain partly open. In 

those problems that can be solved, what are the efficient algorithms or protocols given 

high performance communication also remains open. My proposed future research should 

concentrate on these two problems. 
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