
Survey Report for

High-Speed Network Impact on DDBMS

Ning Zhang
Department of Computer Science

University of Waterloo

February 11, 2001

Abstract
DBMS as an I/O-intensive software has been focused on how to efficiently make use of

cache, main memory, and disk storage based on the observation of their bandwidths in the

memory hierarchy. In the past decade, Distributed Database Management Systems (DDBMS) has

introduced computer network as another kind of data I/O media. Traditionally, computer networks

were put on a lower layer than disk storage in the hierarchy. With the advent of broadband high-

speed network and lightweight (low overhead) protocols, computer networks could have higher

bandwidth than hard disk. How to reflect this fundamental change on the DDBMS or even

traditional centralized DBMS architecture remains open. In this report, I shall survey the current

status of high-speed networks especially gigabit/gigabyte networks, and the low overhead

protocols and architecture. Introductions to Fibre Channel and Infiniband hardware architectures

are included as the two major parts. Different approaches for incorporating high-speed network

infrastructure to operating systems and high level network protocols are also introduced. At last,

we give an analysis how we can incorporation application level protocols to DDBMS.

1. Introduction

1.1. Background and Motivation

The DBMS, as an I/O-intensive software, has largely been affected by the

performance of its underlying hardware and operating system. The optimization of

centralized database systems has been based on the observation that the speed of cache is

about an order of magnitude faster than main memory and main memory is about an

order of magnitude faster than the disk storage [19]. Many cache-conscious main

memory based algorithms and main memory conscious disk-based algorithms are

developed to get better performance by getting data more close to the CPU. This has been

proved to be a very effective way to manage data [20]. In Distributed Database

Management Systems (DDBMS), our previous assumption was that the network was the

bottleneck of the throughputs, so all the methodologies for query optimization and

transaction management are to minimize the network communication, i.e. localize the

computation as far as possible. But this assumption may not still hold for current

hardware platforms.

The fundamental architecture of database systems has been around for nearly twenty

years. In the last two decades, Moore’s law operates on the hardware development --

CPU is getting faster, disk is getting bigger, and there are breakthroughs in long-dormant

communication speeds. All of those have been changed and will change the architecture

of DBMS, as well as DDBMS. In particular, the broadband high-speed networks will

invalidate some of the previous assumptions of DDBMS, thus makes it necessary to

redesign the architecture of next generation DDBMS. With current success of

gigabit/gigabyte networks, network communication may not be the bottleneck any longer.

Moreover high performance networks could be even faster than high performance local

disk (for comparison, the Ultra-3 SCSI interface has a maximum of 160 MB/sec

throughput, while Myrinet can achieve more than 200 MB/sec throughput with TCP/IP

protocols). This implies that transferring data from the main memory of a remote host

may be more efficient that loading data from local disks. If this is the case, what data

structures, algorithms, and utilities of distributed database system have to be modified to

adapt to the new changes? To answer this question, we have to see what have been done

in the broadband and high-speed network infrastructure and what high performance

communication services have available.

In the operating system, all the software components (network interface card drivers,

implementation of protocols stacks, and etc.) related to network communication are

called network subsystem. When two application programs want to communicate to each

other, it is more complicated than simply sending a message from one host to another. To

hide the complexity of underlying networks, the network subsystem of an operating

system usually provides some common services to the upper layer application programs.

Since the needs of the application programs vary depending on their specific

requirements, the common services may not be best suitable for the application program.

For example, for Distributed Database Systems, the basic operations consist of distribute

query processing, distribute transaction management, and distributed storage

management. To be more specific, a DDBMS may have a distributed sorting algorithm

that relies on the underlying network subsystem. The effectiveness and performance of

this distributed sorting algorithm depends largely on what kind of common services and

what the service quality the network subsystem provides. Another example is that the

two-phase-commit distributed concurrency control protocol requires asynchronous

message sending service (one of the most common services provided by the network

subsystem). It is proved that two-phase-commit protocol cannot guarantee the global “all-

or-nothing” property of transaction using asynchronous message passing. Hence, the

network subsystem not only affects the performance of the upper level applications but

also determines their functions and architecture. Based on this observation, it is crucial to

understand what new network architecture and services have been provided to the high

level application programs, so that we have the right baseline when we try to design new

algorithms and architectures for the upper level DDBMS.

1.2. Scope of This Survey

In this report, I shall concentrate on the broadband, high-speed network infrastructure

and the consequential changes on the operating systems and protocols to incorporate this

infrastructure. However, I shall not dig too deep into physical level. All that detailed

information can be found in referenced papers or specifications. What covered in this

report are the architecture of the network or I/O system, and the corresponding

lightweight protocols making the high-performance networks a reality. To be specific, we

want to answer the following questions:

• What are the state-of-art broadband and high-speed networks?

• What components constitute these networks?

• What protocols and OS level modifications have been made to facilitate the new

architecture?

• What end-to-end communication protocols have been adaptive to the changes?

• What the DDBMS can do with these changes in the author’s point of view?

Since the hardware and network communities have been evolving very fast in the last

decade, we may not include all the up-to-date technologies in this survey. I apologies for

not being comprehensive, but because of the time bound, it is the best I have known.

Although, high-speed network seems to be a right breakthrough for distributed

database systems, one must keeps in mind that some theoretical results are still valid. Due

to the autonomy property of distributed database systems, the fundamental distributed

assumption has remained unchanged, that is the limitation of local knowledge in a

distributed system. Some distributed problems remain intractable no matter how fast the

underlying network transmits data. For example, the distributed commit problem cannot

be solved in asynchronous setting regardless the speed of network [22]. How to solve this

kind of problems in synchronous and semi-synchronous networks is not in the scope of

this report.

Another thought of distributed database systems on top of high-speed network is that

it has much similarity with shared-nothing parallel database systems. It is natural to adopt

the parallel algorithms used in parallel database to distributed database systems built on

top of high performance networks. To some extent, the new generation distributed

database system incorporating high-speed network is some kind of combination of

parallel database system and traditional distributed database system, in that it manages

data across high-speed network using parallel algorithms in order to get high degree of

parallelism, and manages data on slow networks using traditional distributed algorithms.

The parallel databases are beyond the scope of this paper. DeWitt and Gray gave an

excellent overview on parallel database systems in [23].

1.3. Organization of this survey

The organization of this report is as follows:

• Section 2 presents the current achievements on the hardware of broadband and

high-speed networks, focusing on gigabit local area networks. These

architectures include Fibre Channel and Infiniband.

• Section 3 investigates the software changes in order to exploit high-speed

network hardware. This includes the operating system changes, lightweight

communication protocols, and higher layer protocols that provide high-speed

communication services to the application level.

• Section 4 discusses (in the point of view of the author’s) the possible impacts

on Distributed Database Systems due to the broadband and high-speed

network infrastructure.

• Section 5 contains conclusion and summary of this report, and proposes

interesting problems for future research.

2. Broadband and High-Speed Network

The network subsystems can be categorized into three major areas: the hardware

architecture of the host, the host software system, and the network interface. Some of the

issues related to the components are:

1. Hardware component: DMA vs. Programmable I/O (PIO) for moving data

between host memory to network interface. This will be discussed in section

2.2.

2. Host software: OS, API, high level protocol processes, and the device driver

for the network interface. This will be discussed in section 3.

3. Network interface: programmable network interface; high performance

protocol support; on-board protocol processing to improve communication

performance. This will be discussed in section 2.2 and section 3.

In section 2.1, we first clarify some concepts related to broadband and high-speed

networks.

2.1. Introduction to Broadband and High-Speed Network

Network performance is determined by two parameters: bandwidth (a.k.a.

throughput) and latency (a.k.a. delay). The bandwidth of a network is defined by the

number of bits that can be transmitted over the network in a certain period of time. So if a

bandwidth of a network is higher, the time needed to transfer one bit is shorter. The

second performance metric, latency, corresponds to how long it takes a message (or a bit)

to travel from one end of a network to the other. Latency is measured strictly by time

(usually seconds). We often think of latency as having three components:

1) The speed-of- light propagation delay. This delay cannot be changed for any

kind of network, although the speed of light may be slightly different in

different transmission media.

2) The amount of time it takes to transfer a unit of data. This is a function of the

network bandwidth and the size of the packet in which the data is carried.

3) There may be queue delays inside the network, since packet switches generally

need to store packets for some time before forwarding them on an outbound

link.

Based on the three kinds of time consumption in data transferring in a switched

network, we would define the total latency as:

• otpl TTTT ++= where lT stands for latency, pT stands for propagation time, tT

stands for transmission time, and oT stands for protocol overhead

in transmission.

•
c
d

Tp = where d stands for distance between the source and destination, c

stands for the speed of light.

•
w
s

Tt = where s stands for size of message, w stands for bandwidth.

The bandwidths available on today’s networks are increasing at a dramatic rate, but

the speed of light does not change. So “high-speed” does not mean that latency improves

at the same rate as bandwidth; the transcontinental “round trip time” (RTT) of a 1-Gbps

link is the same 100 ms as it is for a 1-Mbps link. Here, the meaning of “high-speed” is

twofold. Firstly, high-speed network is usually broadband network. When you want to

transfer large amount of data, the transmission time tT dominates the latency. So, broader

bandwidth networks have less transmission time, hence the total latency is reduced. The

second implication of a high-speed network is that its physical media is usually optical

fiber, which enables long distance transmission of light without being reinforced by

repeaters. This will eliminate significant overhead when the source and destination hosts

are far apart.

We can see that latency and bandwidth are two different metrics although they are

somehow related. Some applications are latency dominated, while some are bandwidth

dominated. For example, interactive programs (such as telnet) are latency dominated, but

some programs involving large amount of data transfer are bandwidth dominated, such as

ftp. So in Distributed Database Systems, which part will be affected by the high-speed,

broadband network is to be determined. Basically, if a DDBMS uses query shipping, the

size of data transfer is usually not large, so it should be latency dominated. On the other

hand, in most cases data shipping DDBMS will be bandwidth dominated. So for query

shipping DDBMS, broadband networks do not help much as to data shipping.

Another thing need to be clarified is that the bandwidth gotten from application level

is much less (
4
1

 ~
10
1

) than that in the “raw” network level. The major cause of this poor

performance was the interaction required between the host and the network operations.

Optimizations could be done in every level of network subsystems. In section 2.2, we

will introduce network adapter and the optimizations on this level. In section 3, software

level optimizations are introduced.

2.2. Network Adapter

Another interesting part when it comes to high performance networks is network

adapter or network interface card (NIC). A lot of research has been done to reduce the

overhead from the network adapter [12, 13, 14, 15, 17, 18]. A network adapter serves as

an interface between the host and the network link, so it is on the lowest level of network

subsystem in the operating system. The network adapter can be divided into two parts:

the host half and the link half. The host half “talks” to the host via I/O bus, while the link

half “talks” to the network link media using particular physical layer and data link layer

protocols. Usually there is small amount of fast memory (such as SRAM) on the network

adapter to synchronize the I/O bus and network link media since they typically (always)

run in different frequencies. The diagram Fig. 1 shows the position of network adapter

between host and network link.

Adaper

Bus Interface

Link Interface

output
queue

input
queue

Host I/O Bus

Network Link

Figure 1 Typical Network Adapter

There are basically two mechanisms to transfer data between adapter and the host

memory: direct memory access (DMA) and programmed I/O (PIO). With DMA, the

adapter directly read/write the host’s memory without any involvement by the host’s

CPU. The host simply gives the adapter a memory address and the adapter read/write

data from/to that memory. There is a less powerful CPU in the adapter, so the work

needed to be done by the adapter should be very simple and quick so that no performance

penalties will be imposed on the network adapter. With PIO, the host’s CPU is directly

responsible for transferring data between the adapter and the host’s memory. The adapter

must maintain a buffer (greater than or equal to the frame size of the network link) to

allow host’s CPU to copy to and from. In comparison, the adapter only needs a few bytes

of buffer to stage between the I/O bus and network link with DMA. In this sense, DMA is

faster than PIO along with its inheriting parallel executing with the host’s CPU. But the

downside of DMA is that it needs a longer startup time than PIO. So it may be less

efficient than PIO when the frame is short.

A typical question facing OS designer is where to allocate a buffer for the data

transferred. Typically the data is put in the system’s space first and then copied to user’s

space. This incurs an OS system mode (user mode to system mode) switching and an

additional memory copy. Both of these two operations can be very expensive when it

comes to high-performance network systems. Thus the user level bandwidth is typically

much less than the raw bandwidth of the underlying networks. One solution is to let the

adapter directly read and write data in the user’s memory. This requires the OS make

changes not only in the upper level protocols, but also in the lower network adapter level

as well. Detailed information can be seen in section 3 when we introduce Trapeze project.

Another problem is that the bandwidth of I/O bus is typically lower than the

network’s bandwidth. For example, a typical bus might have a 32-bit-wide data path

running at 25 MHz, giving it a peak transfer rate of 800Mbps. But this peak rate tells us

almost nothing about the average rate, which may be much lower. Fig. 2 [19] shows the

comparisons between different storage media in a modern computer system.

Level 1 2 3 4
Called Registers Cache Main memory Disk storage
Typical size <1 KB <4 MB <4 GB >1 GB
Implementation
technology

Custom
memory with
multiple ports,
CMOS or
BiCMOS

On-chip or off-
chip CMOS
SRAM

CMOS DRAM Magnetic disk

Access time (in
ns)

2-5 3-10 80-400 5,000,000

Bandwidth (in
MB/sec)

4,000-32,000 800-5,000 400-2,000 4-32

Managed by Compiler Hardware Operating
System

Operating
System/User

Backed by Cache Main Memory Disk Tape
Table 1 The typical levels in the memory hierarchy of modern computer systems

To match up the network bandwidth, researchers have proposed different solutions. A

promising one is to connect the network interface card with system bus along with main

memory, not to I/O bus. Thus the network adapter is treated more like main memory. In

this way, the bandwidths of network link and bus can match better. [15, 17] discussed this

issue in more details.

2.3. Fibre Channel

2.3.1. What is Fibre Channel (FC)?

Fibre channel is a standard developed under the ANSI X3T9.3 task group. It is a

computer communications protocol designed to meet the many requirements related to

the ever- increasing demand for high performance information transfer. The goals of Fibre

Channel include:

• Allowing many well-known existing channels and networking protocols to run

over the same physical interface and media.

• High bandwidth (100MB/s and beyond).

• Flexible topologies.

• Connectivity over several kilometers.

• Support for multiple data rates, media types, and connectors.

In general, Fibre Channel attempts to combine the benefits of both channel and

network technologies.

A channel is a closed, direct, structured, and predictable mechanism for transmitting

data between relatively few entities. Typically, once a channel is set up, there is very little

decision making needed, thus allowing for a high speed, hardware intensive environment.

Channels are commonly used to connect peripheral devices such as a disk drive, printer,

tape drive, etc. Networks, however, are unstructured and unpredictable. Networks are

able to automatically adjust to changing environments and can support a larger number of

connected nodes. These factors require that much more decision making take place in

order to successfully route data from one point to another. Much of this decision-making

is done by software, making networks inherently slower than channels.

 Fibre Channel tries to combine these two technologies together to construct a flexible

I/O architecture based on current high performance communication networks. The high

flexibility of its interconnection topology and high data rate (up to or exceeding 1 Gbps)

make it a preferable technology for high performance parallel and distributed computing,

especially for I/O-intensive computation. To some extents, high performance network

technologies make the externalizing of I/O peripherals possible. That is the I/O devices

are not connected to I/O bus on the motherboard, rather they are connected by high

performance networks and are shared by every machine on the network.

2.3.2. Advantages of Fibre Channel

The features Fibre Channel provides include:

• Unification of networking and I/O channel data communication: all kinds of I/O can

be through high-speed network.

• Bandwidth: the Fibre Channel provides more than 1 Gbps network bandwidth,

enabling communication between computing devices and I/O devices more efficient.

• Inexpensive implementation: the 8B/10B encoding used by Fibre Channel makes the

communication devices inexpensive. Meanwhile, multi-processors based on fast and

inexpensive microprocessors and cheap storage disks are less expensive than

mainframe. Fibre Channel provides more total power than their mainframe

counterparts at a lower price.

• Low overhead: very low of 1210− bit error rate achievable using a combination of

hardware and software achievements.

• Local control: local operations depends very little on global information, so it can

achieve better robustness. This is a nice property for distributed computing and

shared nothing MIMD parallel computing.

• Flexible topology: physical link topologies can be one of the three: 1) point-to-point

links. 2) packet-switching network protocols. 3) shared-media loop topologies. The

three topologies are shown in Fig. 3. In these three topologies, shared-media loop

(also called arbitrated loop) has become the most dominant Fibre Channel topology,

but it is also the most complex. It's a cost-effective way of connecting up to 127 ports

in a single network without the need of a Fabric switch.

• Flexible transmission service: multiple classes of services are available: 1) dedicated

bandwidth between Port pairs at full hardware capacity. 2) multiplexed transmission

with multiple other source or destination Ports, with acknowledgement of reception.

3) best-effort multiplex datagram transmission with acknowledgement. This is

suitable for low error rate lower layer networks to achieve more efficient

transmission. The details of different classes of service will be discussed later in this

section. With these different kinds of services, different applications can find the

appropriate service or combine different services to satisfy their requirements.

• Standard protocol mappings: Fibre Channel has very good compatibility with the

existing I/O and networking protocols. It provides interfaces to multiple Upper Level

Protocols such as IP, Ultra-3 SCSI, IPI-3, HIPPI, ESCON, and AAL5 for ATM.

• Wide industry support: computer vendors, disk driver and adapter manufacturers are

providing supports for Fibre Channels. The standardization by ANSI is in progress.

F C
Adapter

FC
Adapter

FC
Adapter

FC
Adapter

F C
Adapter

FC
Adapter

F C
Adapter

FC
Adapter

Switch
Por t

Switch
Por t

Switch
Por t

Switch
Por t

Supercomputer Graphics Workstat ion

FC
Adapter

FC
Adapter

Workstation Disk Drive

Disk Drive Disk Drive

Fibre Channel Switch

a) point-to-point l ink

b) packet-switched network

c) shared-media loop

Figure 2 Physical topology for Fibre Channel networks.

One of the most promising features of Fibre Channel is its wide range of bandwidths

and compatibility with old transmission media as well as optic fiber. One of the goals of

Fibre Channel is to allow HIPPI to map to it. HIPPI is a 100MB/s technology, thus Fibre

Channel's primary data rate allows for data to travel 100MB/s. This speed is referred to as

full speed. There also exists half speed, quarter speed, and eighth speed. In addition,

double and quadruple speeds are defined. The following table illustrates.

Name Bandwidth (MBps) Bandwidth (Mbps)

eighth speed 12.5 133

quarter speed 25 266

half speed 50 531

full speed 100 1,063

double speed 200 2,126

quadruple speed 400 4,252

Table 2 Bandwidths of Fibre Channel

Note that the bandwidth in Mbps notation is not 8 times the number of bandwidth in

MBps. This is because that Fibre channel uses 8B/10B encoding and the frame overhead

and other overheads are factored in the MBps figures.

2.3.3. Fibre Channel Layers

The Fibre Channel standard can be understood easier if it is broken down into layers

as it is for networking protocols. Fibre Channel can be divided into five layers:

1. FC-0: its main functions include signaling, media specifications, and

receiver/transmitter specifications. It defines the physical media and links with the

receivers and transmitters. Single-mode, multi-mode fiber, coaxial cable, and

shielded twisted pair are defined as transmission media.

2. FC-1: its main functions include 8B/10B encoding and link maintenance. It

describes an 8B/10B transmission code which bounds the maximum run length of

a code, maintains DC balance, and provides word alignment.

3. FC-2: its main functions include frame format, sequence management, exchange

management, flow control, classes of service, login/logout, topologies,

segmentation and reassembly. It defines the signaling protocol which includes the

frame structure and byte sequences.

4. FC-3 defines a set of services which are common across multiple ports of a node.

5. FC-4 is the highest level in the standard set. It defines the mapping, between the

lower levels of the Fibre Channel and other Upper Level Protocols (ULPs) such

as IPI (Intelligent Peripheral Interface), SCSI (Small Computer System Interface)

command sets, HIPPI data framing, and IP.

FC-0 and FC-1 can be thought of as defining the physical layer of the OSI model. FC-

2 is similar to what other protocols define as a Media Access Control (MAC) layer,

which is typically the lower half of the data link layer. FC-3 is not really a layer at all. It

is still a largely undefined set of services for devices having more than one port. FC-4

defines how other well-known higher layer protocols are mapped onto and transmitted

over Fibre Channel. Thus, one can roughly think of the Fibre Channel layers defining up

through the Transport layer of the OSI model.

Three classes of services are offered to users. Class 1 provides dedicated connection

service. Data frames are delivered to the destination in the same order they are

transmitted by the source. Both class 2 and class 3 services are connectionless services.

Class 2 service guarantees notification of delivery or failure to deliver, while class 3

supports unacknowledged delivery. Class 1 service will be used by applications requiring

a guaranteed communication bandwidth for a long period of time (e.g., audio or video on-

demand applications). Class 2 will be used by applications where multiple transfers are

open at one time with frames from the different transfers multiplexed on a single fiber

(e.g., the client/server model of distributed computing). The messages transferred by

class 2 service are acknowledged like TCP protocol in the Internet. Class 3 is designed to

be used for applications like the data link layer of connectionless network protocols such

as IP or UDP in the Internet.

Testing in [11] has shown that if the message size is less than 4K, the latency is

dominated by the FC transmission time. For class 1 service, when the message size is

greater than 4K, the DMA transfer dominate the latency. For example, for a 3 MB

message, the DMA operation accounts for 85% of the write latency. The maximum

available bandwidth for user-level, DMA and FC phases are 3.61, 4.24, and 25.4 MBps

respectively. DMA operation usually contains delays of physically locking the memory

pages of the user buffer, preparing the address list, and moving data from main memory

to the interface.

For class 2 and 3 services, the maximum transmission size is 128 bytes. Instead of

using DMA for moving data, PIO is used in class 2 and 3 services. PIO reduces the

latency of transmitting small messages across the I/O bus. This is because the DMA

transfer preparation time and page boundary latency are eliminated. In class 2 service,

since it requires acknowledgement from the remote receiver after physically transmitting

the message, the FC time is much larger than any other factor (initiation, PIO, and

completion phases). Class 3 write operation does not have acknowledgement

requirement, so its FC transmission time is less than class 2 write operation.

With the processing of standardization of Fibre Channel, more classes of services are

coming into place. For the current time being, we are not introducing all the classes of

services. Detailed information can be found in the standard specification published by

ANSI.

2.4. InfiniBand Architecture (IBA) System Area Network

2.4.1. What is InfiniBand Architecture?

InfiniBand Architecture has many similarities with Fibre Channel in that both of them

attempts to externalize the I/O devices onto high performance networks, but InfiniBand

Architecture could have even higher bandwidth and more sophisticated architecture. IBA

defines a System Area Network (SAN, sometimes it is called Storage Area Network) for

connecting multiple I/O devices, I/O platforms and processors. It provides not only data

communication among I/O devices and platforms, but only management functions. IBA

SAN encompasses a wider range of I/O platforms than Fibre Channel, managing I/O

platforms such as RAID, or Fibre Channel itself. Fig. 3 shows the typical architecture of

InfiniBand.

IBA Fabric

Processor
Node I/O Node

I/O Node

I/O Node

Processor
Node

Router

Figure 3 IBA System Area Network

An IBA can be thought of as three kinds of nodes connected by a high performance

network called IBA fabric. The three kinds of nodes are processor nodes, I/O nodes and

routers. Each processor node can consists of multiple CPU’s and shared memories.

Similarly, an I/O node can also be as complex as a RAID system or Fibre Channel. The

router nodes are used to connect to other subnets. The IBA Fabric consists of switches

and routers connected by optic fiber. It can be further divided into IBA subnets connected

by router just as the Internet does. So a general case of the IBA System Area Network is

that IBA Fabric connects different nodes, which could be processor nodes, I/O nodes or

routers connecting to other subnets. IBA subnet consists of end nodes, switches, routers

and subnet manager interconnected by links. For different types of nodes, different

adapters are used to connect to IBA Fabric. For process nodes, HCA (Host Channel

Adapter) is used, while TCA (Target Channel Adapter) is used for I/O devices and I/O

platforms.

2.4.2. Advantages of IBA

The value propositions for InfiniBand Architecture are in the following aspects:

• Easy of connect: there is only one fabric connection for all host I/O, which

includes Inter-Process Communication (IPC), storage I/O and network I/O.

• Scalability: IBA is easy to scale to thousands of nodes per subnet. Subnets can be

connected by routers to construct an even larger packet-switched network.

• Performance: CPU-offload hardware support for message queuing, memory

protection and fabric protocol processing.

• Reliability, availability and serviceability: the network can achieve reliability by

redundant paths and/or fabrics, in-board management for connectors, baseboard,

chassis and power, and error management is handled by layered architecture.

• Flexibility: IBA can use different topologies for different circumstances. Also it

can be built on top of optical fiber as well as coaxial copper. Routers can connect

IBA network to other types of networks such as the Internet.

In general, InfiniBand Architecture is a scalable hardware platform that can

encompass wide varieties of computation platforms and storage platforms. Its basic

architecture is very close to the Internet architecture in that nodes (CPU nodes or I/O

nodes) are connected by switches to form a subnet, and many subnets can be connected

by routers to form a larger IBA network. Depending on the capability of the routers, it

can connect to almost all kinds of communication networks including the Interenet. Thus

IBA is an open architecture not only for boosting computing and communication power

within the IBA network, but also for allowing accesses from non-IBA networks. This

feature makes it very appropriate for parallel and distributed computing.

2.4.3. InfiniBand Architecture Layers

As with Fibre Channel, InfiniBand also provides a layered architecture for

modularity. Fibre Channel has 5 layers corresponding to the physical layer and data link

layer in the ISO/OSI reference model. InfiniBand Architecture provides not only physical

layer and data link layer, but also network layer and transport layer. With these two extra

layers, it is easy to deal with the problems such as packet routing, message segmentation

and re-ordering, and networks management. So IBA can inherently be more sophisticated

than Fibre channel. The five layers in IBA are as follows:

1. Physical layer: defines how the bits are placed on the wire and defines the

symbols for framing. The signaling protocol is specified.

2. Link layer: defines packet format and protocols for packet operations. For

example, it defines flow control protocols and how packet is routed within a

subnet between the source and destination.

3. Network layer: defines protocols for routing packets between subnets.

4. Transport layer: segments messages that are larger than the Maximum Transfer

Unit (MTU) in the sender’s side and reorganizes the packets into messages in the

receiver’s side.

5. Upper layer protocols: IBA supports any number of upper layer protocols by

various user consumers. This includes certain management functions such as

subnet management and subnet services.

Consumer

IBA
Operations

SAR

Network

Link Encoding

Media Access
Control

Consumer

IBA
Operations

SAR

Network

Link Encoding

Media Access
Control

Packet
Relay

M
A
C

M
A
C

M
A
C

M
A
C

L
i
n
k

L
i
n
k

Packet
Relay

End Node Switch Router End Node

Signaling

Flow
Control

Subnet Routing

Inter Subnet Routing

Mesages (QP)

Consumer Operations

Upper Level
Protocols

Transport
Layer

Network
Layer

Physical
Layer

Link
Layer

Figure 4 IBA Layers

Fig. 4 shows the five layers in InfiniBand Architecture. Consumer at the highest level

is any program or upper level protocols that request network communication to the lower

layers. The lower four layers of IBA have the similar functionality as the Internet

protocol’s physical layer, data link layer, network layer and transport layer in the same

hierarchy. One can think of it as a variant of Internet protocol on the high performance

network environment, in which interconnecting devices and protocols as well as the

nodes are well defined. In fact, the IBA uses IPv6 addressing in the transport layer and

also support multicast. The upper layer protocols in IBA are an extension of network

management protocols defined in the application layer in the Internet protocols. Actually

the upper layer protocols in IBA include the SNMP (Simple Network Management

Protocol) protocols defined in the Internet protocols. In addition, it also provides services

such as connection management, baseboard management, I/O device management,

performance management and others. All of these management protocols ensure that the

sophisticated networking architecture performs best on top of high-speed network

infrastructure.

At the top level of the protocol layers, a consumer can queue up a set of instructions

that the hardware executes. This facility is referred to as a work queue. Work queues are

always created in pairs, called Queue Pair (QP), one for send operations and one for

receive operations. In general, send queue holds instructions that cause data to be

transferred from this consumer’s memory to another consumer’s memory. And receive

work queue holds the instructions about where to put the data received from other

consumers. IBA only defines QP for HCA (interface for processor node), but not for

TCA (interface for I/O nodes). The QP is the virtual interface that the hardware provides

to an IBA consumer and it provides a virtual communication port to the consumer. The

IBA supports at most 242 QP’s per channel adapter, so a host can simultaneously

communicates with at most 242 other hosts. Each QP provides isolation and protection

from other QP’s and consumers. Thus QP can be considered as a private resource

assigned to a consumer.

There are 5 different classes of transportation services provided to the consumer:

reliable connection, unreliable connection, reliable datagram, unreliable datagram, and

RAW datagram. Their semantics are shown in the following table.

Service Type Connection
Oriented

Acknowledged Transport

Reliable Connection Yes Yes IBA
Unreliable Connection Yes Yes IBA

Reliable Datagram No Yes IBA
Unreliable Datagram No No IBA

RAW datagram No No Raw
Table 3 IBA Service Type

Each QP is configured for a certain class of service type. Both the source and

destination QP must be assigned to the same type of service. Each service type has a

certain set of operations available to the consumer, and requires different initialization

steps. In addition to the type of services, IBA provides several mechanisms that permit a

subnet manager to administrate various quality of service.

Data in different layers are organized in different format and are given different

names. In Transport Layer, data are organized into messages. The semantics of messages

could be memory oriented such as read/write in Remote Directed Memory Access

(RDMA), or channel-oriented operations such as send/receive. When a message is too

large to be transferred by the Network Layer, the Network Layer segments the messages

into packets in proper size. Packets are end-to-end fabric data unit to transfer and are

routable. End-to-end transfer guarantees reliable transport service by acknowledgment

and sequencing the packets.

In summary, InfiniBand Architecture is a suitable architecture for high performance

I/O applications. It can connect wide varieties of computing platforms and I/O platforms

together to form a reliable and flexible system. The Internet- like architecture enables it to

exploit current research results of ever growing Internet hardware and software, for

example IPv6 and multicast. The embedded network management facilities make

possible the IBA grows as large as it is needed. All of them make it a preferable hardware

architecture for parallel and distributed I/O-intensive computing. But since it is a very

new technology, no much research and experiment have been done on top of InfiniBand

Architecture.

3. Software Changes for High-Speed Network

Subsystems

There are two ways to improve end-to-end bandwidth:

• using broadband networking technologies such as Fibre Channel and Infiniband.

• modifying the operating system’s architecture.

In this section, we will investigate the second way to see what have been done in the

operating system’s side and the networking protocols

3.1. Changes in Operating System (Tapeze on FreeBSD)

From operating system’s point of view, the network subsystem has two possible ways

to reduce the overhead imposed by the network interface:

1. Make I/O devices more peripheral: push I/O devices such as hard disks out on the

high-speed network, and make them available to every machine on the network.

This is the strategy realized by Fibre Channle, InfiniBand Architecture and many

other researchers [5, 6].

2. Make high-peed network interface card closer to the CPU: push network interface

card up to system bus from I/O bus.

In [17], the authors identified that the key bottleneck for high-speed network is

network interface due to the low bandwidth of I/O bus and lack of cache of device

registers on the network interface card. Also the current network interface card is

designed with an interface similar to a disk’s interface. Most current network interfaces

require application to use operating system calls. The CPU can only access the on-board

registers in an in-order and non-speculative way. All these limitations make network

interface card a bottleneck for the high performance network. The solutions that [17]

proposed are to:

1. mapping network interface memory to virtual memory so that accessing network

interface is the same as accessing memory.

2. connecting network interface to memory bus instead of I/O bus.

3. allowing caching network interface registers, out-of-order and speculative access

to these registers.

4. removing some side-effects from the API in the Operating System.

Trapeze project [5, 6] tries to boost the performance of network communication in the

network protocols level by using lightweight high- level protocols. In the next section, we

introduce lightweight protocols used in Trapeze project.

3.2. Lightweight Network Protocols (lighweight RPC, End-to-End

Communication, Active Message, Split-C, Fast Message)

There are basically two types of communication between difference processes:

• Message passing model: processes send messages to one another through

communication channels.

• Shared memory model: processes communicate by performing operations on shared

data structures called objects. Each object has a type associated with it. Each type

describes the set of operations that can be performed on an object, and the response

that it should return if it is accessed by one operation at a time. The relationship

between objects and types are the same relationship between object and class in

object-oriented programming languages. For example, register type is responsible to

store values that can be read or written by all processes. The serializable problem

arises for the objects.

Remote Procedure Call (RPC) belongs to the second kinds of service. It provides user

an interface to services provided by remote hosts. Each host can register services it

provides to a directory server. When a client requests some service, it sends looking up

queries to the directory server. The directory server will return the host name who

provides the type of service. The client then sends service requests and parametersto that

server. Typically, RPC is built on top of transport layer by using reliable/unreliable

connectionless services (for example UDP). New lightweight variants of RPC have been

a hot research topic. Trapeze is one of the projects.

Trapeze was designed primarily to support fast kernel-to-kernel messaging alongside

conventional TCP/IP networking. Its prototype on TCP/IP is shown in Fig. 5.

Socket Layer
file/VM

TCP/IP stack

 SliceNFS

NetRPC

Trapeze network driver

raw Trapeze message layer

Trapeze Firmware

User Applications

PCI Bus

NIC

Host Kernel

User Space

Figure 5 An view of Trapeze prototype

Trapeze is based on Myricom’s Myrinet, which is a cost-effective, high-performance,

packet-communication and switching technology that is widely used to interconnect

clusters of workstations, PCs, servers, or single-board computers. Myrinet provides an

interface for programming on the firmware on the network interface card, so that it is

extensible for the user to enhance the network interface. Trapeze is based on the custom

Myrinet firmware and kernel-to-kernel message layer optimized for block I/O traffic. In

the Trapeze Network Interface Card (NIC) firmware, it enables zero-copy block

movement, that is, no additional buffers needed in the operating system’s space. Data was

directly copied to the buffers in user’s space.

In the prototype shown in Fig. 5, NetRPC is a lightweight RPC built on top of raw

Trapeze message layer. Trapeze messages are short (128 bytes) control messages with

optional attached payloads. If there is payload, the host attachés a payload buffer to a

message by placing its DMA address in a designated field of the message header.

Although the control message and its payload are transferred in one packet, it is separated

in the receiver’s side automatically by the firmware. Zero-copy is achieved by

demultiplexing the payload from the message using an incoming payload table on the

NIC. In addition, the upper layers also have to complement the zero-copy feature. The

TCP/IP driver, socket layer and NetRPC share a common pool of aligned network

payload buffer allocated from virtual memory page frame pool. Therefore, when you

execute a DMA operation, the driver just hands on the address of this virtual memory

buffer. The NIC firmware reads from or writes to this buffer. The operating system does

not need to copy payloads to other virtual memory buffers. All it needs to do is to

mapping the network payload address to the user space address. Zero-copy feature

significantly reduces overheads for TCP streams.

In order to get high performance, Trapeze also employs an adaptive message

pipelining mechanism to pipeline the DMA transfer on I/O bus and network link. This

will minimize the latency of I/O block transfers. Another feature of NetRPC is non-

blocking RPC, in which the calling thread or process does not have to wait the return of

an RPC call. Instead it sets a continuation procedure to be executed when the remote

procedure reply arrives. Non-blocking RPC is a simple extension of kernel facilities

already in place for asynchronous I/O on disks (select/poll system calls on Unix).

The Slice built on top of NetRPC is a block I/O service. It is called “network storage”

in that it is built on a collection of PCs that share disk storage. It is different from

traditional file server and System Area Network (SAN), but something “in-between”. On

top of Slice and NFS, the operating system also provides file or virtual memory (VM)

interfaces to the application programs. The application programs can just call a system

call (open/read/write) to access the file or mapping some I/O devices to some virtual

memory and directly access that memory. Both mechanisms take advantages of the high

performance block I/O done by the Trapeze message layer.

In addition to Trapeze, there are many other approaches trying to connect the low-

speed Internet with the high performance network [7, 8, 14]. Their common idea is to

place a software router between the low-speed and high-speed network. The router

switches packets from the low-speed network to the high-speed network by extracting its

payload and then adding new headers. Zero-copy can be achieved from the router to the

host on the high-speed network. On the other way, from high-speed network to the low-

speed network, the router does the reverse thing.

4. High-Speed Network Impact on Distributed Database

Systems

Based on the discussion above, we have seen the major improvements on the

hardware architecture and protocols for high-speed networks. It is time to think wha t they

can do for distribute database or parallel database systems. It is obvious that broadband,

high-speed network architectures such as Fibre Channel and InfiniBand can be

automatically applied to shared-disk parallel database system. But since shared-memory

and shared-disk parallel databases are not as promising as shared-nothing parallel

databases anymore [23], we are more interested in the impact of broadband high-speed

networks on shared-nothing or distributed database systems. When network speed gets

faster and bandwidth get higher, distributed database systems can be thought of as a

shared-nothing parallel database system in some sense. Technologies used in shared-

nothing parallel databases can be automatically used to distributed database systems. In

the shared-nothing parallel database systems, one obvious problem is how to place data.

In traditional distributed database systems, tables can be partitioned either horizontally or

vertically. Once the partitioning is done, little should be changed unt il the next run of

partition. This is based on the assumption that network bandwidth is low. So we had

better reduce data transmission and localize the work. However, in the shared-nothing

parallel database system, data can be partitioning using many mechanisms. [23]

introduced three ways: range partitioning which is the same as horizontal partitioning,

round-robin partitioning which is also a kind of horizontal partitioning but is not based on

some semantics, and hashing partitioning in which the placement of each tuple is

determined by a hashing function. I believe there are many more ways of partitioning

tables. Data placement issue should be one of the interests of future research.

Another major technical problem for parallel database system is how to make

relational operators run in more parallel. Distributed databases based on high

performance networks should also take steps in this direction. There are two types of

parallelisms that can be exploited by database systems: pipelined parallelism and

partitioned parallelism. The former can be achieved by streaming the output of one

operator into the input of another operator such that the two operators can work in series.

The latter can be achieved by partitioning the input data among multiple processors and

memories. An operator can usually be divided into multiple sub-operators and execute in

parallel. Distributed database systems should use some parallelism ideas of parallel

databases to exploit the faster network infrastructure.

Although distributed database systems can borrow some ideas from parallel database

systems in the environment of high-speed network, the low-speed network is still a

possibility for general purposed distributed database systems. Moreover, many

difficulties of distributed database systems come from the autonomy nature (or local

knowledge) of distributed systems, not the network speed or bandwidth. Distributed

algorithm theories for typical database problems (for example, distributed transaction

management and query optimization) need more investigation. This should definitely be

one of the future research areas in distributed database systems.

With more and more information being put onto the Web, no list of research areas

would be complete without mentioning the Web. The new fundamentals here are long

response time (but maybe with high bandwidth), autonomy, heterogeneity, and security.

For long response time, we need to understand when and how to cache information and

how to validate or invalidate it. To cope with autonomy requires cooperative, non-

intrusive protocols that Web sites will want to sign up for. Security for distributed

systems has long been a ``black hole,'' and the Web makes its solution more pressing.

With the Internet backbone getting faster and faster, a tremendously huge highly

distributed heterogeneous database system has been generated. Managing these data are

extremely difficult and should be the future research of all database community.

5. Conclusion and Future Works

In this report, I have introduced the hardware and software progress to broadband

high-speed network systems. Two major hardware architectures are introduced – Fibre

Channel and InfiniBand Architecture. Both of them are trying to push the I/O devices out

onto high performance networks. Protocols similar to the Internet protocols are developed

for communication within these architectures and connecting them to the outside world.

Based on this new hardware architecture, some high level lightweight (low overhead)

protocols are also developed to achieve high bandwidth in the user level. Lightweight

RPC is such a typical protocol that allows transmitting messages quickly. Operating

systems should also be adapted to the high bandwidth to eliminate copying overhead.

Zero-copy is one of these mechanisms.

Distributed database systems are very complex system. Figuring out what problems in

the distributed systems can be solved and what cannot be solved remain partly open. In

those problems that can be solved, what are the efficient algorithms or protocols given

high performance communication also remains open. My proposed future research should

concentrate on these two problems.

Reference:
1. The Asilomar Report on Database Research, Phil Bernstein, Michael Brodie, Stefano

Ceri, David DeWitt, Mike Franklin, Hector Garcia-Molina, Jim Gray, Jerry Held, Joe
Hellerstein, H. V. Jagadish, Michael Lesk, Dave Maiver, Jeff Naughton, Hamid
Pirahesh, Mike Stonebraker, and Jeff Ullman, ACM SIGMOD Record 27, 1998.

2. Fibre Channel, Gigabit Communications and I/O for Computer Networks, Alan F.
Benner, McGraw-Hill 1995.

3. Infiniband Architecture Specification Volum 1 Release 1.0, Infiniband Trade
Association, October 24, 2000

4. Infiniband Architecture Specification Volum 2 Release 1.0, Infiniband Trade
Association, October 24, 2000

5. Network I/O with Trapeze, Jeffrey S. Chase, Darrell C. Anderson, Andrew J. Gallatin,
Alvin R. Lebeck, and Kenneth G. Yocum, 1999 Hot Interconnects Symposium.
August 1999.

6. Cheating the I/O Bottleneck: Network Storage with Trapeze/Myrinet, Darrell C.
Anderson, Jeffrey S. Chase, Syam Gadde, Andrew J. Gallatin, Kenneth G. Yocum,

and Michael J. Feeley, Proceedings of the 1998 USENIX Technical Conference, New
Orleans, June 1998.

7. Interposed Request Routing for Scalable Network Storage, Darrell Anderson, Jeffrey
Chase, and Amin Vahdat. In the.4th Symposium on Operating System Design and
Implementation.

8. Payload Caching: High-Speed Data Forwarding for Network Intermediaries, Ken
Yocum and Jeff Chase, appear in the 2001 USENIX Technical Conference (June
2001), December 2000.

9. The Case of RDMA, C. Sapuntzakis, A. Romanow, and J. Chase, Internet-Draft, Dec.
2000.

10. Storage Area Networking, Michael Peterson, http://www.sresearch.com/wp_9801.htm
11. Performance of High-Speed Network I/O Subsystems: Case Study of A Fibre Channel

Network , Mengjou Lin, Jenwei Hsieh, David H.C. Du, and James A. MacDonald,
Supercomputing’94 (November 1994).

12. An Analysis of VI Architecture Primitives in Support of Parallel and Distributed
Communication

13. Design Challenges for High-Performance Network Interfaces, Andrew A. Chien,
Mark D. Hill, Shubhendu S. Mukherjee, IEEE Computer, November 1998.

14. Efficient High-Speed Data Paths for IP Forwarding using Host Based Routers, S.
Walton, A. Hutton, and J. Touch, In Proceedings of the 9th IEEE Workshop on Local
and Metropolitan Area Networks, pages 46--52, November 1998.

15. Design Issues for User-Level Network Interface Protocols on Myrinet, R. A. F.
Bhoedjang, T. Ruhl, and H. E. Bal, IEEE Computer, 1998.

16. Efficient, Protected Message Interface in the MIT M-Machine, Whay Sing Lee,
William J. Dally Stephen W. Keckler, Nicholas P. Carter Andrew Chang, IEEE
Computer Special Issue on Design Challenges for High Performance Network
Interfaces , November 1998. pp 69-75.

17. Making Network Interfaces Less Peripheral, Shubhendu S. Mukherjee and Mark D.
Hill, IEEE Computer, October 1998.

18. Design Issues for User-Level Network Interface Protocols on Myrinet, Raoul
Bhoedjang Tim Ruhl Henri E. Bal, IEEE Computer, 1998.

19. Computer Architecture A Quantitative Approach, Second Editioin, David A.
Patterson, John L. Hennessy, Morgan Kaufmann, 1996.

20. DBMSs on a Modern Processor: Where Does Time Go?, Anastassia Ailamaki, David
J. DeWitt, Mark D. Hill, David A. Wood, Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

21. Readings in Database Systems, Morgan Kaufmann Series in Data Management
Systems, 1998

22. A Hundred Impossibility Proofs for Distributed Computing, Nancy Lynch, In
Proceedings of the 8th Annual ACM Symposium on Principles of Distriubted
Computing, pp. 1-27, 1989.

23. Parallel Database Systems: The Future of High Performance Database Processing,
David J. DeWitt, Jim Gray, Communication of ACM, Vol. 36, No. 6, June 1992.

