A Survey of High-speed Networks

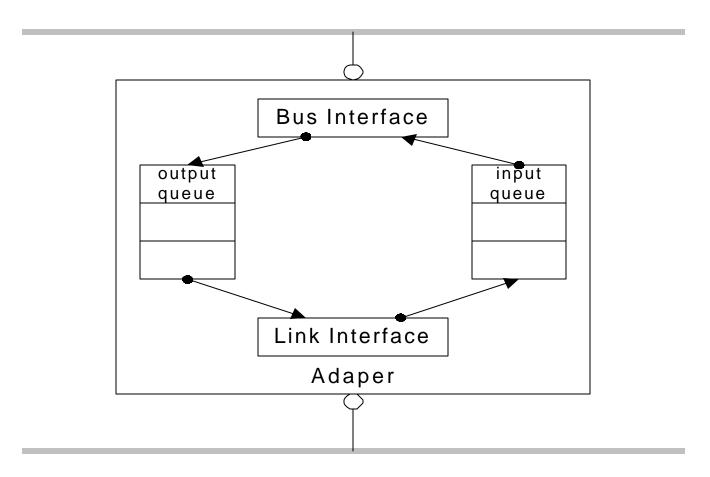
By Ning Zhang
University of Waterloo

Questions to Answer

- What is the role of network subsystem in OS?
- What is new in high-speed network?
- What is the usage of high-speed networks in current I/O devices?
- What can be done to the DDBMS based on these changes?

Network Subsystem

- In OS, all the software components (NIC driver, protocol implementations ...) related to network communications are called **network subsystem**.
- Three components in Network subsystem: hardware architecture of the host, the host software system, and the network interface.
- The common services provided to the application determines their functionality and efficiency.
- It is crucial to understand what services provided to the upper layer applications.


Broadband and High-speed Network

- Network performance is determined by 2 parameters: bandwidth and latency.
- Bandwidth: the number of bits can be transferred in a unit of time. Broadband means the number is large.
- Latency: the time it takes to transfer a certain size of message from one end to the other end. Highspeed means the latency should be short.

Measure of Latency

- Latency $T_l = T_p + T_t + T_o$
 - $-T_p = d/c$, represents propagation time,
 - $-T_t = s/w$, represents transmission time,
 - T_o represents protocol overhead.
- High-speed is two-fold:
 - $-T_t$ is small \rightarrow broadband network.
 - T_o is small \rightarrow low overhead protocols and hardware support.

Host I/O Bus

Network Link

Network Interface Card

- Who do the dirty work?
 - Direct Memory Access (DMA)
 - Programmable I/O (PIO)
- Where to put the data?
 - System's space
 - User's space.
- How close to the CPU?
 - I/O bus
 - System bus

Proposed Changes to NIC

- Mapping NIC memory to virtual memory
- Connecting NIC to memory bus rather than I/O bus
- Allowing caching network interface registers, out-of-order and speculative access to the registers.
- Removing side-effects from the API in OS.

Typical Levels in Memory Hierarchy

Level	1	2	3	4	5
Called	Registers	Cache	Main Memory	Disk Storage	Network
Bandwidth (MB/s)	4,000- 32,000	800- 5,000	400-2,000	4-32	1-200
Backed by	Cache	Main Memory	Disk	Network	Tape

JOIN Network and Disk

- Integrate the two distinct devices into one:
 - Pushing up NIC to system bus → make faster devices closer to CPU
 - Externalizing disk to high-speed networks → make slower devices farer from CPU
- System/Storage Area Network (SAN): creating a method of attaching storage to network.
 - Fibre Channel (FC): ANSI X3T9.3
 - InfiniBand Architecture (IBA): HP, IBM, Intel, Microsoft, Sun...
 - Others: ESCON, SCCI, HIPPI...

Fibre Channel Features

- Allowing many well-known existing channels and network protocols to run under the same physical interface and media
- High bandwidth (>=100MB/sec)
- Flexible topologies
- Connectivity over several kilometers.
- Support for multiple data rates, media types, and connectors.

Fibre Channel Layers

- FC-0: signaling, media specification, receiver/transmitter specification.
- FC-1: data encoding, link maintenance.
- FC-2: frame format, sequence management, flow control, classes of service, topologies.
- FC-3: undefined set of services.
- FC-4: mappings for Upper Level Protocols (ULPs).

Fibre Channel Services

- Class 1: dedicated connection service. Frame orders are preserved. e.g. audio/video on-demand.
- Class 2: connectionless, but guarantees notification of delivery or failure to deliver. e.g. client/server distributed computing.
- Class 3: connectionless, unacknowledged delivery. e.g. IP/UDP packets.

InfiniBand Architecture vs. FC

- Higher bandwidth (250M~3GB/sec) and more sophisticated architecture than FC.
- Higher scalability: thousands of nodes per subnet. (FC -- 127 nodes in arbitrated loop).
- Higher flexibility: more complex topologies
- More layers and classes of services.
- Support IP v.6 and multicast.

IBA Layers

- Physical layer: signaling, framing, etc.
- Link layer: packet format, flow control, subnet routing, etc.
- Network layer: routing between subnets.
- Transport layer: message segmentation and reordering.
- Upper layer protocols: network management protocols, etc.

IBA Service Types

Service Type	Connection Oriented	Acknowledged	Transport
Reliable Connection	Yes	Yes	IBA
Unreliable Connection	Yes	Yes	IBA
Reliable Datagram	No	Yes	IBA
Unreliable Datagram	No	No	IBA
RAW datagram	No	No	Raw

Lightweight Network Protocols (Trapeze as an example)

- Trapeze is built on Myrinet
- Lightweight Remote Procedure Call (RPC)
 - Programmable firmware on NIC
 - Zero-copy
 - Message pipelining on DMA
- Non-blocking RPC
 - Natural extension to select() system call.
 - Set up a hook procedure then return immediately.

Impact on DDBMS?

- How to place data?
 - Range partitioning
 - Round robin partitioning
 - Hashing partitioning
- How to make relational operators more parallel?
 - Pipelined parallelism
 - Partitioned parallelism

Conclusion and Future Work

- As networks getting faster and faster, protocol overhead becomes the biggest time consumer.
 - Hardware solution: Storage Area Networks (FC, IBA)
 - Software solution: lightweight protocols (Trapeze)
- DDBMS needs to revise its assumption, algorithms, and strategies.