

The Overview of Web Search Engines

Presented by Sunny Lam

Outline

- Introduction
- Information Retrieval
- Searching Problems
- Types of Search Engines
- The Largest Search Engines
- Architectures
- User Interfaces
- Web Directories
- Ranking
- Web Crawlers
- Indices
- Metasearchers
- Add-on Tools
- Future Work
- Conclusion

Questions about the Web

Q: How many computers are in the world?

A: Over 40 million.

Q: How many of them are Web servers?

A: Over 3 million.

Q: How many Web pages in the world?

A: Over 350 million.

Q: What is the most popular formats of Web documents?

A: HTML, GIF, JPG, ASCII files, Postscript and ASP.

Q: What is the average size of Web document?

A: Mean: 5 Kb; Median: 2 Kb.

Q: How many queries does a search engine answer every day?

A: Tens of millions.

Characteristics of the Web

- Huge (1.75 terabytes of text)
- Allow people to share information globally and freely
- Hides the detail of communication protocols, machine locations, and operating systems
- Data are unstructured
- Exponential growth
- Increasingly commercial over time (1.5 % .com in 1993 to 60% .com in 1997)

- Build by Companies and hide the technical detail
- Distributed data
- High percentage of volatile data
- Large volume
- Unstructured and redundant data
- Quality of data
- Heterogeneous data
- Dynamic data
- How to specify a query from the user
- How to interpret the answer provided by the system

Information Retrieval

- Search Engine is in the field of IR
- Searching authors, titles and subjects in library card catalogs or computers
- Document classification and categorization, user interfaces, data visualization, filtering
- Should easily retrieve interested information
- IR can be inaccurate as long as the error is insignificant
- Data is usually natural language text, which is not always well structured and could be semantically ambiguous
- Goal: To retrieve all the documents which are relevant to a query while retrieving as few non-relevant documents as possible

User Problems

- Do not exactly understand how to provide a sequence of words for the search
- Not aware of the input requirement of the search engine.
- Problems understanding Boolean logic, so the users cannot use advanced search
- Novice users do not know how to start using a search engine
- Do not care about advertisements? No funding
- Around 85% of users only look at the first page of the result, so relevant answers might be skipped

Searching Guidelines

- Specify the words clearly (+, -)
- Use Advanced Search when necessary
- Provide as many particular terms as possible
- If looking for a company, institution, or organization, try:

www.name [.com | .edu | .org | .gov | country code]

- Some searching engine specialize in some areas
- If the user use broad queries, try to use Web directories as starting points
- The user should notice that anyone can publish data on the Web, so information that they get from search engines might not be accurate.

Types of Search Engines

- Search by Keywords (e.g. AltaVista, Excite, Google, and Northern Light)
- Search by categories (e.g. Yahoo!)
- Specialize in other languages (e.g. Chinese Yahoo! and Yahoo! Japan)
- Interview simulation (e.g. Ask Jeeves!)

The Largest Search Engines

(1998)

Search engine	URL	Web pages indexed
AltaVista	www.altavista.com	140
AOL Search	search.aol.com	N/A
Excite	www.excite.com	55
Google	google.stanford.edu	25
GoTo	goto.com	N/A
HotBot	www.hotbot.com	110
Go	www.go.com	30
Lycos	www.lycos.com	30
Magellan	magellan.excite.com	55
Microsoft	search.msn.com	N/A
Northern Light	www.northernlight.com	67
Open Text	www.opentext.com	N/A
WebCrawler	www.webcrawler.com	2

Search Engine Architectures

- AltaVista
- Harvest
- Google

AltaVista Architecture

Harvest Architecture

Google Architecture

User Interfaces

Query Interface

- A box is entered a sequence of words (AltaVista uses union, HotBot uses intersection)
- Complex query interfaces (e.g. Boolean logic, phrase search, title search, URL search, date range search, data type search)

Answer Interface

- Relevant pages appear on the top of the list
- Each entry in the list includes a title of the page, an URL, a brief summary, a size, a date and a written language

Web Directories

- Also called: catalogs, yellow pages, subject directories
- Hierarchical taxonomies that classify human knowledge
- First level of taxonomies range from 12 to 26
- Popularities: Yahoo!, eBLAST, LookSmart, Magellan, and Nacho.
- Most allow keyword searches
- Category services: AltaVista Categories, AOL Netfind, Excite Channels, HotBot, Infoseek, Lycos Subjects, and WebCrawler Select.

The Most Popular Web Directories in 1998

Web directory	URL	Number of Web sites	Categories
eBLAST	www.eblast.com	125	N/A
LookSmart	www.looksmart.com	300	24
Lycos Subjects	www.lycos.com	50	N/A
Magellan	magellan.excite.com	60	N/A
NewHoo	www.newhoo.com	100	23
Netscape	search.netscape.com	N/A	N/A
Search.com	www.search.com	N/A	N/A
Snap	www.snap.com	N/A	N/A
Yahoo!	www.yahoo.com	750	N/A

Ranking

- Not publicly available
- Do not allow access to the text, but only indices
- Sometimes too many relevant pages for a simple query
- Hard to compare the quality of ranking for two search engines
- PageRank, Anchor Text

PageRank

- Used by WebQuery and Google
- The equation:

$$PR(a) = q (1 - q)?_{(i = 1..N)} PR(p_i)/C(p_i)$$

- Google simulates users using the search engine to rank documents
- Google uses citation graph (518 million links)
- Google computes 26 million in a few hours
- Many pages point to the result page? High ranking
- Some high-ranking pages point to the result page ? High ranking

Anchor Text

- Most search engines associate the text of a link with the page that the link is on
- Google is the other way around
- Advantages: more accurate descriptions of Web pages and document can be indexed
- 259 million anchors
- Idea was originated by WWWW (World Wide Web Worm)

Other Features

- Keep track of location information for all hits
- Keep track of visual presentation (e.g. font size of words)

Web Crawlers

- Software agents that traverse the Web sending new or updated pages to a main server where they are indexed
- Also called robots, spiders, worms, wanders, walkers, and knowbots
- The 1st crawler, Wanderer was developed in 1993
- Not been publicly described
- Runs on local machine and send requests to remote Web servers
- Most fragile application
- Breath-first and depth-first manner
- Avoid crawling same pages
- Web pages change dynamically
- Invalid links: 2% to 9%
- Fastest crawlers are able to traverse up to 10 million pages per day

Google Crawler

- Fast distributed crawling system
- How does it work?
- Peak speed: > 100 pages/sec or 600k per sec for 4 crawlers
- Use DNS cache to avoid DNS look up
- Each connection possible states:

Looking up DNS

Connecting to host

Sending request

Receiving response

Crawling problems

Internet Archive

- Uses multiple machines
- A crawler is a single thread
- Each crawler assigns to 64 sites
- No site is assigned to more than one crawler
- Each crawler reads a list of URLs into per-site queues
- Each crawler uses asynchronous I/O to fetch pages from these queues in parallel
- Each crawler extracts the links inside the downloaded page
- The crawler assigns links to appropriate site queues

Mercator

- Named after the Flemish cartographer Mercator
- Developed by Compaq
- Written in Java
- Scalable: can scale up to the entire Web (has fetched tens of millions of Web documents)
- Extensible: designed in a modular way, can add new function by 3rd parties

Indices

- Use inverted files
- Inverted file is a list of sorted words
- Each word points to related pages
- A short description associates with each pointer
- 500 bytes for description and pointer
- Store answer in memory
- Reduce size of files to 30%
- Use binary search for searching for a single keyword
- Multiple keyword searching requires multiple binary search independently, then combine all the result
- Phrase search is unknown in public
- Phrase search is to search words near each other

Metasearchers

- A Web server that takes a given query from the user and sends it to several sources
- Collect the answer from these sources
- Return a unified result to the user
- Able to sort by host, keyword, data, and popularity
- Can run on client machine as well
- Number of sources is adjustable

Metasearchers in 1998

Metasearcher	URL	Sources used	
C4	www.c4.com	14	
Dogpile	www.dogpile.com	25	
Highway61	www.highway61.com	5	
InFind	www.infind.com	6	
Mamma	www.mamma.com	7	
MetaCrawler	www.metacrawler.com	7	
MetaMiner	www.miner.uol.com.br	13	
Local Find	local.find.com	N/A	

Inquirus

- Developed by NEC Research Institute
- Download and analyze Web pages
- Display each page with highlighted query terms in progressive manner
- Discard non-existing pages
- Not publicly available

Savvy Search

- Available in 1997, but not now
- Goal #1: maximize the likelihood of returning good links
- Goal #2: minimize computational and Web resource consumption
- Determines which search engines to contact and in what order
- Ranks search engines based on query terms and search engines performance

STARTS

- Stanford Protocol Proposal for Internet Retrieval and Search
- Supported by 11 companies
- Facilitates the task of querying multiple document sources
- 1. Choose the best sources to evaluate a query
- 2. Submit the query at these sources
- 3. Merge the query results from these sources

STARTS Protocol

- The Query-Language Problems
- The Rank-Merging Problem
- The Source-Metadata Problem

Add-on Tools: Alexa

- Free: www.alexa.com
- Appear as a toolbar in IE 5x
- Provide useful information about the sites
- Allow users to browse related sites.
- Perform searches within the Web site, related site or the whole Web
- Shop online
- Provide popularity
- Provide speed of access
- Provide freshness
- Provide overall quality from Alexa users

Future Work

- 1. Provide better information filtering
- 2. Pose queries more visually
- 3. New techniques to traverse the Web due to Web's growth
- 4. New techniques to increase efficiency
- 5. Better ranking algorithms
- 6. Algorithms that choose which pages to index
- 7. Techniques to find dynamic pages which are created on demand
- 8. Techniques to avoid searching for duplicated data
- 9. Techniques to search multimedia documents on the Web
- 10. Friendly user interfaces
- 11. Standard protocol to query search engines
- 12. Web mining
- 13. Developments of reliable and secure intranet

Conclusion