
CS748T
Distributed Database Management

Lecturer: Prof. M. Tamer Özsu

Semantic Data Control
in

Distributed Database Environment

by

Lubomir Stanchev

February 2001
University of Waterloo

2

INTRODUCTION

• Semantic Data Control is:
• Checking the validity of a database

• The rules that determine whether a database is
valid are called:
• Constraints

• This presentation covers how to impose
constraints

• Enforcing constraints is important because:
• databases in which constraints are not

imposed could have multiple interpretations:
• i.e. become unusable

3

OUTLINE

• Type of Constraints
• Data Constraints

• Duplication Constraints
• Integrity Constraints

• Update Constraints

• Applications of Semantic Data Control

• Algorithms for Enforcing Constraints
• Materialized View Maintenance Algorithms
• Materialized View Update Algorithms
• Integrity Constraint Compilation
• Integrity Constraint Restoring Algorithms

• Conclusion and Future Research

4

DATA CONSTRAINTS

Note: Replica constraints are a special kind of view constraints

5

UPDATE CONSTRAINTS

• Specify what kind of updates are allowed on the data.
• An update constraint consists of a triple (P+,P-,P+-)
• Example:

R1(A,B)
R2(B,C)

constraint: �t1�R1 �t2�R2 (t1.B=t2.A)
compiled constraint:

• (�t2(t1.B=t2.B), TRUE,

t1(new).B = t1(old).B ���t2(t1(new).B=t2.B)) on R1

• (TRUE, ��t1(t1.B=t2.B),

t2(new).B = t2(old).B � ��t1(t1.B=t2(new).B)) on table R2.

• Dynamic Constraint
 (T, P+,P-,P+-)

Note: Dynamic update constraints can are specified usually as
multiple update constraints.

6

IMPOSING CONSTRAINTS

 constraint
operation

static update
constraints to be
imposed

imposing dynamic
duplicate
constraints

imposing static
duplicate
constraints

update to a
materialized view

integrity constraint
preserving +
guaranteeing feasible
translation to the
underlying data

through deferred
materialized view
update algorithm

through immediate
materialized view
update algorithm

update to underlying
data sources

integrity constraint
preserving

through deferred
materialized view
maintenance
algorithm

through immediate
materialized view
maintenance
algorithm

Table 1. Shows how duplication constraints are imposed.

imposing static integrity constraints imposing dynamic integrity constraints
through update constraints
by applying an immediate integrity
constraint restoring algorithm

by applying a deferred integrity constraint
restoring algorithm

Table 2. Shows how integrity constraints are imposed

7

EXAMPLE OF CONSTRAINT
ENROFORCEMENT

8

DATA WAREHOUSE APPLICATION

9

DATA VISUALIZATION APPLICATION

MOBLIE SYSTEMS

2. Materialized View Maintenance

10

Classification of Materialized View
Maintenance Algorithms

11

Incremental View Maintenance without
Auxiliary Views

• Over SPJ queries: �A(�ø(R1 � R2 � ... Rn)

• V=�ø(R)

• �ø(R') =��ø(R+¨R) =��ø(R)+�ø(¨R) = V +��ø(¨R)

• V=��A (R)

• �1(R+¨R)���1(R)+�1(¨R)
• e.g.

• R={(2,1),(2,2),(3,1)}

• ¨R={-(2,1)}

• �1(R+¨R)=��1({(2,2),(3,1)})={(2),(3)}

• �1(R)+�1(¨R)={(2),(3)}-{(2)}={(3)}

• The problem is that duplicate eliminating projection is not
distributive relative to union

• Solution - use duplicate preserving projections
• Add tuple IDs to each table and require for them to

participate in the attribute list of every projection. In
our example:
• R = {(1,2,1),(2,2,2),(3,3,1)}
• ¨R = {-(1,2,1)}

• �1,2(R+¨R) =��1,2({2,2,2),(3,3,1)}) = {(2,2),(3,3)}

• �1,2(R+¨R) =��1,2({2,2,2),(3,3,1)}) = {(2,2),(3,3)}
• Implement duplicate preserving projections by tuple

counting. In our example:

• �1(R+¨R) =��1({(2,2,#1), (3,1,#1)})
 = {(2,#1),(3,#1)}

• �1(R) + �1(¨R) = {(2,#2),(3,#1)}-{(2,#1)}
 = {(2,#1),(3,#1)}

12

Incremental View Maintenance without
Auxiliary Views (Cont'd)

• Over Join Queries: V = R1�R2�R3

• V' = (R1+¨R1)�(R2+¨R2)�(R3+¨R3)=

R1�R2�R3+R1�R2�¨R3+...+¨R1�¨R2�¨R3.
• We have used that join is distributive relative to union
• We will have 2n-1 expressions for ����������	
������

• Optimizations
• Tuple Marking:

R1 R2 R1�R2

insert insert insert
insert delete ignore
insert old insert
delete insert ignore
delete delete delete
delete old delete

old insert insert
old delete delete
old old old

• Exploiting Integrity Constraints:
• R1 = (A,B), R2 = (B,C), f.k. constraint R1.B=R2.B

• V=R1�R2,

• �V = ¨R1�¨R2+¨R1�R2+R1�¨R2

• but R1�¨R2 will be empty

• �V = ¨R1�¨R2+¨R1�R2

13

Incremental View Maintenance without
Auxiliary Views (Cont'd)

• Over aggregate queries with min/max:
• R1={(1,2),(2,1),(2,4)}

• V = 1�PLQ���(R1) = {(1,2),(2,1)}
• If (1,2) is deleted from R1

• time to do incremental refresh = time to do direct update
• reason : min, max are not self-maintainable aggregates

• Over aggregate queries with count/sum/sum:

• V = 1�VXP���(R1) = {(1,2),(2,5)}
• If (1,2) is deleted from R1, updating V to {(1,0),(2,5)} is

clearly wrong
• Solution: use tuple accounting again

• V will be stored as {(1,2,#1),(2,5,#2)}
• when (1,2) is deleted from R1, V will be correctly updated

to {(2,5)}.

14

Incremental View Maintenance with
Auxiliary Views

• Each materialized view may have a number of auxiliary views
associated with it.

• The purpose of the auxiliary views is to allow the corresponding
materialized view to be maintained without the base tables to be
queried.

• Formally: (auxiliary_views n
iiR 1}{ = ,�����������������������

 (�� query Q') s.t. (��������������� ��� ���������������� ����

Q(���������������� n
iiR 1}{ =)]

• Basic idea: Reduce the size of the auxiliary views as much as
possible by exploiting integrity constraints

• Example:
• X(A,B,C), Z(B,D,M), Y(C,F,G)
• V=�A,F,D(�D>10 ß F<3(X�X.C=Y.CY�X.B=Z.B Z)

• V =��A,B,C(X) � X.C=Y.C��C,F(�F<3(Y)) � X.B=Z.B��B,D(�D>10(Z))

• The above rewriting is possible because the projection is duplicate
preserving

• Vnew =��A,B,C(X+¨X) � X.C=Y.C��C,F(�F<3(Y+¨Y)) � X.B=Z.B

�B,D(�D>10(Z+¨Z))

• But ¨Y�X and ¨Y�Z will be empty, so
• Vnew = V+��A,B,C(¨X)�� X.C=Y.C��C,F(�F<3(¨Y)) � X.B=Z.B

�B,D(�D>10(¨Z))+��A,B,C(¨X) � X.C=Y.C��C,F(�F<3(¨Y)) � X.B=Z.B

�B,D(�D>10(Z+¨Z))+��A,B,C(¨X) � X.C=Y.C��C,F(�F<3(Y+¨Y)) � X.B=Z.B

�B,D(�D>10(¨Z))

• Therefore we need only the auxiliary views �B,D(�D>10(Z))�and

�C,F(�F<3(Y))

Note: The two type of algorithms use the same formula simplification
based on integrity constraints

15

Materialized View Update Algorithms

• A materialized view update algorithm tries to translate
updates made to materialized views to the underlying
tables.

• Definitions:

• V1 � V2 iff �D1,D2������������Q1(D1)=Q1(D2) =>
Q2(D1)=Q2(D2).

• V1 � V2 means V1 is more informative than V2

• If V1�V2 and V2�V1 then V1=V2, i.e. the two views
are equivalent

• S1�S2 if

�D1,D2�����������

[�Q1�S1 Q1(D1)=Q1(D2)] =>[�Q2�S2 Q2(D1)=Q2(D2)]
• V1 and V2 over R are complement if {V1,V2} is

equivalent to R.
• V1 is complement to V2 relative to R means that V2

contains the missing information from V1 relative to
R.

• If V ��R and V�R��� then V has more than one
complement

• A translation of a view V with underlying tables R can
be identified uniquely by specifying which
complement of V is to remain unchanged during the
update.

16

Materialized View Update Algorithms (Cont'd)

• Example

• We have the constraints that EMP is a primary key for the
Employee table and Employee.DEP is a foreign key to the
Department table.

• We have defined a translation of V2 such that view V1 is to
remain invariant under the translation.

• If employee A is replaced by employee F in V2, employee A will
be replaced by employee F in table X

• If X is to be the invariant compliment of V2, the above update is
unfeasible

• Solution: update constraint on V2:
• (FALSE, FALSE, t .new(EMP) = t.old(EMP)),

17

Constraint Compilation

• This is the process of imposing integrity constraints by
defining appropriate update constraints (see slide 5)

• In general an integrity constraint is:

(Q1x1) ...(Qnxn)�Ai

• Where Ai is of the form P(x1,...xk,Q(x1,...xk)) where Q is

a query and P is a build in predicate like <,=,�.
• Example:

• EMP(ENO,ENAME,TITLE), PROJ(PNO,
PNAME,BUDGET).

• Constraint: The total duration for all employees in the
CAD project is less than 100

• In the above form:

�j�{[PROJ(j)]=>[j�(select * from PROJ as P where
P.NAMD="CAD") => (select sum(G.DUR) from ASG as
G where G.PNO=j.PNO)<100)]}

• To impose update constraint, define a materialized
view
• V = (select * from PROJ as P where

P.NAMD="CAD")
• Impose the update constraint

• (t=�,FALSE,t(new).A<100) on V

18

Integrity Constraint Restoring Algorithms

• In a distributed database constraints may often be
violated

• If this happens we define a repair as:

Repair(D,�,IC) = {D' | D'�Models(�,IC) �

[�(D''�Models(�,IC)) |D-D'|<=|D-D''|]}

• Example
• R={(1,2),(1,3),(2,1)}, where the first attribute is a key.

• The set of minimal repairs is
{{(1,2),(2,1)},{(1,3),(2,1)}}.

• R1={(1,2),(2,1)} and R2={(1)}, constraint: R1.2���R2.1
• delete the tuple (1,2) from R1 or
• add the tuple (2) to R2.

19

Conclusion

• Formal framework for specifying and imposing
constraints on the data in a distributed database
environment.

• Open research problem:
• Synchronizing the three type of algorithms that

guarantee the validity of integrity, update and
duplication constraints

