
1

Consistency Control Algorithms For Web Caching

Leon Cao

y2cao@math.uwaterloo.ca

February 9th, 2001

Abstract

This survey focuses mainly on the problem of cache consistency on the World-Wide

Web (WWW). So far there is no perfect algorithm that deals with cache consistency

issues that result from using web caching to reduce client latency and traffic. The survey

first studies several web caching consistency approaches such as adaptive TTL, update

threshold, polling-every-time, and invalidation, then compares various cache consistency

algorithms used in transactional client/server DBMS architecture, trying to get a

conclusion on what might be a good cache consistency algorithm for web caching. Each

individual algorithm has its advantage given certain criteria. A good cache consistency

algorithm should be able to deal with different user demands and network situations.

1. Introduction

The rapid increase in web usage has led to dramatically increased loads on the

network infrastructure and on individual web servers. To ameliorate these mounting

burdens, there has been much recent interest in web caching architectures and algorithms.

Web caching reduces network load, server load, and the latency of responses. In the

context of WWW, caches act as intermediate systems that intercept the end-users’

requests before they arrive at the remote server. A web cache checks if the requested

information is available in its local storage, if yes, a reply is sent back to the user with the

requested data; otherwise the cache forwards the request on behalf of the user to either

another cache or to the original server. When the cache receives back the data, it keeps a

copy in its local storage and forwards back the results to the user. The copies kept in the

cache are used for subsequent users’ requests.

2

There are two basic types of web cache currently being used: browser cache and

proxy cache. Browser cache is implemented by the local browser software such as

Netscape or Internet Explorer. Basically the hard disk of the end user’s computer has a

section that stores objects the user accessed before. This cache is useful when the user

hits the ‘back’ button to go to a page he/she visited before. Those cached pages will be

read from the local cache almost instantaneously.

Proxy cache works on the same principle, but a much larger scale. Proxies serve

hundreds or thousands of users in the same way; large corporations and ISP’s often set

them up on their firewalls. Because proxy caches usually have a large number of users

behind them, they are very good at reducing latency and traffic. That’s because popular

objects are requested only once, and served to a large number of clients. Figure 1 is a

general structure of web cache.

Figure 1: general structure of Web cache

However, caching has not only brought solutions on faster access to the Internet

community, it has also introduced new issues and challenges. In essence, there is a

pragmatic problem regarding the consistency between the cached data and the data on the

World-Wide Web

Web Server

Web Server

Web Server

Browser

User

Proxy

cache

Browser Browser Browser

User User User

…. ….

…... …...

LAN
Cache

3

original server. By introducing caching mechanism, multiple copies of the requested data

are created and stored in various caches all over the Internet. How to keep them

consistent while considering the network traffic and client response delay, when to issue

validation or invalidation message, which part, client cache or the web server, should

issue such kind of message, these problems created an interesting area for research.

If we consider the heterogeneity nature of the WWW, the consistency problem

becomes even more complicated. However, it is out of the scope of this survey. This

survey will focus only on various approaches for current web caching, as well as existing

cache consistency algorithms used in client-server architecture, assuming both client and

server use compatible platforms.

The next section focuses on cache consistency approaches for the Internet; Section 3

gives comparison, limitations and possible improvements of these consistency

approaches; Section 4 focuses on existing algorithms in client/server environment, their

features based on a taxonomy. Section 5 concludes the survey and summarizes the

possible future work to be done.

2. Cache Consistency for the Internet

The value of cache is greatly reduced if cached copies are not updated when the

original data change. Cache consistency mechanisms ensure that cached copies of data

are eventually updated to keep consistency with the original data. An ideal cache

consistency solution will enforce the consistency to the maximum extent, while reducing

the network bandwidth consumption and server load. There are basically two categories

of cache consistency approaches: weak cache consistency and strong cache

consistency. [3] gave a definition on these two terms. Weak cache consistency is the

model in which client response time is more emphasized, but a stale document might be

returned to the user; strong cache consistency, on the other hand, enforces the freshness

of document all the time, but has the expense of extra server resource consumption.

2.1 Weak Cache Consistency

Existing Web caches mostly provide weak consistency, which means it is possible for

the user to get a stale document from the cache, because at the moment, the contents on

4

the web server have changed but the cache hasn’t done the synchronization yet. Two

mechanisms fall into this category: TTL (Time-To-Live) and Client Polling. Their feature

in common is that the client cache, who initiates the consistency process, sends validation

messages to server.

2.1.1 TTL (Time-To-Live)

Under this approach, each object (document, image file, etc.) is assigned a TTL (time

to live) value, such as two hours or one day. This value is an estimate of the object’s

lifetime, after which it’s supposed to change. When the TTL expires, the data is

considered invalid, and the next request for the object will cause the object to be

requested from the original server. A slight improvement to this basic mechanism is that

when a request for an expired object is sent to the cache, instead of requesting file

transfer from the server, the cache first sends an “if-modified-since” control message to

the server to check whether a file transfer is necessary.

TTL-based strategies are simple to implement, by using the “expires” header field in

HTTP format. Following is an example of an HTTP header that applies the “expires”

field:

HTTP/1.1 200 OK
Date: Fri, 09 Feb 2001 10:19:29 GMT
Server: Apache/1.3.3 (Unix)
Cache-Control: max-age=3600, must-revalidate
Expires: Fri, 09 Feb 2001 11:19:29 GMT
Etag: “3e86-410-3596fbbc”
Content-Length: 1040
Content-Type: text/html
…

The HTML document would follow these headers, separated by a blank line.

The challenge in supporting this approach lies in selecting an appropriate TTL value.

If the value is too small, after a short period of time the cached copy will be considered

stale. Therefore a number of “if-modified-since” messages will be sent to server

frequently for expiration check, which results in extra network traffic (although it might

be trivial comparing to the actual file transfer) and server overhead. On the other hand, if

5

the value is too big, out-of-date document may be returned to the end-user because the

cache still thinks it’s fresh while the document has already been modified by the server.

The critical issue for this approach is how to choose the TTL value. [2] initially used

a flat lifetime assumption for their simulation, which means that they assigned all objects

with equal TTL values. This resulted in poor performance in their experiment. Later on

they modified the TTL value based on the popularity of the file. This is also mentioned in

[3], which defined this improved approach as adaptive TTL. Adaptive TTL takes

advantage of the fact that file lifetime distribution is not flat. If a file has not been

modified for a long time, it tends to stay unchanged. [2] also mentioned that globally

popular files are the least likely to change. By using adaptive TTL, the probability of

stale documents is kept under reasonable bounds (<5%) [2].

2.1.2 Client Polling

Client polling is another approach of weak cache consistency. It means the client

(cache) periodically checks back with the server to determine if cached objects are still

valid. It is somewhat like the adaptive TTL, because under both cases the client sends out

validation message to check if the document is still valid, when the client starts to think

the document might be stale. Alex FTP cache [6] uses an update threshold to determine

how frequent to poll the server. The update threshold is expressed as a percentage of the

object’s age. An object is invalidated when the time since last validation exceeds the

update threshold times the object’s age [2]. For example, consider a cached file whose

age is 30 days and whose validity was checked one day ago. If the update threshold is set

to 10%, then the object should be marked as invalid after 3 days (10% * 30 days). Since

the object was checked yesterday, requests that occur during the next two days will be

satisfied locally, and there will be no communication with the server including control

message. After the two days have elapsed, the file will be marked invalid, and the next

request for the file will cause the cache to retrieve a new copy of the file from the server.

Same as TTL, the trick here is how to decide the update threshold.

6

2.2 Strong Cache Consistency

We could see from the introduction of weak cache consistency that weak consistency

methods save network traffic and user latency at the expense of returning stale documents

to the users. Under situations where document modification doesn’t happen very

frequently, or user doesn’t have strict requirement on the freshness of the document,

weak cache consistency is an economic approach. However, if the validity of the data is

important (such as stock quote), then a strong consistency has to be enforced. The two

widely accepted methods for strong cache consistency are invalidation and polling-every-

time.

2.2.1 Invalidation

Many distributed file systems rely on this method to ensure that cached copies never

become stale. In the web environment, this simple method also applies because

conflicting updates never happen (if there are conflicting updates, what we need is a more

complicated transactional consistency algorithm). Under this mechanism, the web server

plays a crucial role. It is responsible for keeping track of the cached data. The server

implements this by keeping all cache addresses that have the copy of the data. Once the

data is modified on the server, the server sends out message to notify the caches on the

list that their data are no longer valid. This notification process is considered complete

only after all the clients on the list have received the message. Invalidation guarantees

that when the user requests a document, the returned document is up-to-date. The trade-

off is the overhead at server side.

2.2.2 Polling-every-time

 This method is an extreme case of client polling that is used in weak cache

consistency. Under this approach, whenever the client cache receives a document request

from the end user and there happens to be a copy in the cache, it will first contact the web

server to validate the cached copy. If it’s fresh then the copy will be returned to the user,

otherwise a new copy will be sent to cache and replace the old one. This approach also

involves a lot of message transfer, possibly a large portion of which is useless. But given

7

a short lifetime of the objects and frequent requests from the user, this method is expected

to be efficient.

3. Comparison, limitations and Improvements of Web Cache

Consistency Approaches

3.1 Conceptual Differences

Let’s take a look at the differences of the above mentioned cache consistency

approaches from conceptual point of view:

• TTL, adaptive TTL and Client Polling, as the weak consistency methods, assign

the central role to the client cache. Whether the end user gets a fresh document or

not all depends on how often the cache checks the validity of the document.

Therefore weak consistency methods are time-based, the document lifetime, or

the update threshold determines the trade-off between document freshness and

network bandwidth.

• Invalidation and Polling-every-time are event-driven. For invalidation method, the

web server sends out invalidation message to caches only when its document is

modified. For polling-every-time, whenever it receives a request from the end

user, the client cache has to poll server to confirm whether the document is fresh.

This also implies a possible heavy network traffic solely caused by all these

control messages sent back and forth, which in turn results in the overhead of web

server. The frequency of file update on the web server, or the frequency of user

requests, greatly influence the network traffic and server load. Notice for strong

cache consistency approaches, there is no trade-off to document freshness,

because this is ensured by the protocol that the returned document is always fresh

(if the time spent from server-send-out- invalidation-message to cache-receive-

message could be ignored).

8

3.2 Experimental Results

Cao and Liu [3] implemented their experiments in a web caching system called

Harvest, and compared the performance of adaptive TTL, invalidation and polling-every-

time by replaying web server traces through the prototype running on workstations

connected by an Ethernet. They used five Web server traces from the Internet Traffic

Archive. Let’s take the experiment results that got from two of them to analyze the

limitations and benefits of each consistency approach. These two servers are: SASK (the

Web server at the University of Saskatchewan, Saskatoon, Canada) and SDSC (the

WWW server for the San Diego Supercomputer Center).

Figure 2 Results from SASK & SDSC [3]

• The documents modified on SASK server is much more than those on SDSC.

This is reflected by the number of different types of messages recorded on SASK

and SDSC. Take TTL as an example, on SASK it created almost twice as GET

requests as it did on SDSC. Compared to the modified-files ratio (1148/57), this is

not too bad. The number of If-modified-since messages tripled, while again Reply

200 (reply with document follows) messages more than twice. One thing

interesting and reasonable is that we could figure out the rough ratio of modified

Trace Trace
Modification Modification
Approach TTL Polling Invalidation Approach TTL Polling Invalidation
Hits 16456 16565 16268 Hits 4907 4907 4905
Get Requests 35015 34906 35203 Get Requests 20523 20523 20525
If-Modified-Since 922 16565 0 If-Modified-Since 239 4907 0
Reply 200 35388 35689 35203 Reply 200 20535 20549 20525
Reply 304 549 15782 0 Reply 304 227 4881 0
Invalidations 0 0 6028 Invalidations 0 0 248
Total Messages 71874 102942 76434 Total Messages 41524 50860 41298
File Xfer bytes 185MB 187MB 183MB File Xfer bytes 263MB 263MB 263MB
Ctrl Msg bytes 3.91MB 7.09MB 4.29MB Ctrl Msg bytes 2.39MB 3.38MB 2.36MB
Messages bytes 189MB 194MB 187MB Messages bytes 265MB 266MB 265MB
Stale Hits < 410 0 0 Stale Hits < 14 0 0
Avg. Latency 0.124 0.138 0.134 Avg. Latency 0.16 0.173 0.165
Min Latency 0.010 0.039 0.010 Min Latency 0.010 0.038 0.010
Max Latency 32.1 12.2 107 Max Latency 12.2 12.2 12.2
Server CPU 26.0% 30.2% 27.6% Server CPU 34.1% 35.6% 32.7%
DISK RW/s .37;2.2 .41;2.3 .41;2.5 DISK RW/s .94;2.3 1.4;2.0 1.0;2.2

SASK, 51471 requests
1148 files modified

SDSC, 25430 requests
57 files modified

9

files on each server by looking at the numbers of invalidation messages. 6028/248

= 24.3, while 1148/57 = 20.1, which is roughly the same.

• One result that worth paying attention to, I think, is the number of cache hits.

Cache hits should be one of the most important factors to consider when

evaluating the efficiency of a cache consistency algorithm, because it significantly

reduces user latency. However, the numbers of cache hits in above two tables

don’t indicate the exact responsiveness and efficiency of the specific approach,

because in the experiments, a cache hit is counted when the document that an end-

user requests is in the cache. This doesn’t necessarily mean that document is

fresh. For invalidation, when a cache hit happens, the cached document will be

sent to the user immediately; but for polling-every-time, when this happens, the

client cache will send a ‘if-modified-since’ control message to server to confirm

the freshness of the document. For adaptive TTL, this issue also exists. When a

cache hit happens, the cache will first check if the document has expired

according to the TTL value. If it’s still valid the document will be sent out

immediately, otherwise a control message will be sent to server.

• For each approach, the sizes of control messages on SASK are bigger than those

on SDSC, which is due to the much bigger number of modified files. But SASK

recorded a smaller file transfer size than SDSC. Probably this is because the files

modified on SDSC have much bigger sizes.

• As invalidation messages are only generated in invalidation method, the stale hits

only apply to weak consistency methods, i.e., adaptive TTL in [3]. If we compare

the number of stale hits across the two tables, the one on SASK is much bigger

than the number on SDSC, which result from the more frequency of file

modification on the former.

• In both tables, we can see that contacting the server at each cache hit costs

polling-every-time a much higher minimum latency and higher average latency

than the other two approaches. The numbers also show that invalidation has a

significantly large worst-case latency, i.e., a request from the end user can be

stalled somewhere in the network for a long time. The authors of [3] pointed out

10

that this is because their current implementation could only handle incoming

requests after all invalidation messages for a document have been sent via TCP.

• The last two rows in the above tables show the average server CPU utilization and

disk read/write per second during the trace replay. Looking at the numbers, we

could see that polling-every-time generally has a higher server CPU utilization,

especially when the proxy cache hit ratio is high. This reflects the CPU cost of

handling “if-modified-since” requests at the server.

The experiment results of [3] show that the invalidation approach performs the best

among the three consistency approaches. Adaptive TTL works very well at keeping stale

hit ratio low, but invalidation does not cost more in comparison. Whether it is in terms of

cache hits, network traffic, response time, or server loads, invalidation performs quite

similar to adaptive TTL, while it always ensures the freshness of the document. From this

aspect invalidation approach is much more attractive than other cache consistency

methods. Of course, invalidation is a preferred method for maintaining strong consistency

than polling-every-time. The reason is straightforward. Except in the extreme case of file

lifetime on the order of minutes, polling-every-time produces too many useless control

messages sent to server for document validity check, which results in extra network

bandwidth consumption and server load.

Gwertzman and Seltzer (G&S) [2] also used Harvest system to conduct their

experiments. The difference is that they added Alex protocol [8] to their experiment,

while eliminating the hierarchy factor of the Harvest system. This is because hierarchical

caching structure significantly reduces the overhead for invalidation, which might not be

a good factor in the experiments to compare these methods. The effect of hierarchical

factor is also pointed out in [3], where the authors attributed their reason of eliminating

the caching hierarchy to the fact that hierarchical caches are not yet widely present in the

Internet.

G&S’s simulation model is somewhat optimized by taking advantage of the

combination of adaptive TTL and invalidation mechanisms. They used a lightweight

cache server, which has an independent process that checks the freshness of the

11

documents periodically. Whether a document is stale or not is determined by using TTL

values and invalidation callbacks from cooperating primary servers. The authors further

optimized the invalidation protocol such that when the cache receives an invalidation

notice, the document is marked as invalid but the cache will not retrieve the document

immediately from server until the next user request comes. Although this will certainly

increase latency in subsequent accesses to the document, it decreases bandwidth

consumption if the document is not accessed again. The experiment results show that the

cache miss rates improved dramatically because of this change.

After a couple of experiments, G&S realized that they should change the flat lifetime

distribution of documents because basically, different types of documents have various

lifetime as well as access frequency. They gathered information from Microsoft proxy

server and Boston University’s server log. Following is the data they summarized:

File type %-age of
total access

Average
File size(B)

Average
life-span (days)

Median age (days)

GIF 55% 7791 85 146
HTML 22% 4786 50 146
JPG 10% 21608 100 72
CGI 9% 5980 NA NA
Other 4% NA NA NA

From the table we could see that image files (GIF and JPG) have a relatively long

lifetime which means they are less likely to change. Meanwhile their sizes are relatively

small (in the order of KB). This indicates that they are good candidates for caching.

Based on this the authors concluded that weak cache consistency will be effective since

the most popular web objects also have the longest life-span.

G&S’s experiments show that the update threshold approach provides the best

performance among TTL, invalidation and itself. It could produce a stale rate of less than

5%. Meanwhile, it produces server load comparable to, or even less than that of the

invalidation protocol with much less bookkeeping.

12

Figure 3: CERN Proxy cache logic [4]

Different from the approaches mentioned above, Wessels [4] used the HTTP server

developed by CERN [9] as a proxy cache for the experiments. Figure 3 illustrates the

combined usage of client polling and TTL approaches in the proxy cache logic. Beside

the proxy cache, the author also developed a cache management program that runs in

conjunction with the proxy cache to add, update and expire cache objects at regular

intervals. The interesting feature of Wessels’ experiments is a two- level cache, one called

short-term, the other long-term. Which cache an object stays in is all controlled by the

cache manager. Figure 4 illustrates the interaction of proxy/caching components of the

experiment model.

[4] didn’t compare different cache consistency approaches. Instead, the author

developed the software, which relies heavily on the proxy for cache consistency, but

takes advantage of invalidation when available to provide fewer stale objects. The

experiment results show the dramatic improvement of user response time by using the

proxy cache.

URL
Request

Object
in cache?

Object EXPIRY
time Reached?

Make an
IF-Modified-Since
Request to server

Refresh interval
time Reached?

Send object
from cache

Was object
modified?

Retrieve object
from remote server

YesYes

Yes No

No

No

Yes No

13

Figure 4: Interaction of Proxy/Caching components [4]

Wessles’ experiment indicates that using a proxy cache improves user response time.

The cache manager plays a crucial role in this model because only it is responsible for the

cache consistency.

3.3 Limitations and Improvements

Both [2] and [3] tried to find the best cache consistency method by conducting

experiments in the environment they set up. However, besides the limitations of the

different methods, their experiments have certain degrees of limitations as well.

Weak cache consistency could be implemented where the object freshness demand

from the end-user is not so strict. For example, it could be used for online newspapers

that change daily. However, at the situation such as online weather forecast, or stock

quote, where the requested document must always be up-to-date, a strong cache

consistency mechanism has to be implemented.

The trace replay in [3] is performed in a local area network instead of the Internet.

Under this environment, client response time is certainly much better than a real Web

environment. The simulated environment is comparable to a high-speed, high-

performance wide area network, but it cannot reflect the actual bandwidth of the Internet.

The other point is that the experiments use server traces instead of client or proxy caches.

Because the user requests seen by the server are partially filtered by client caches already,

server traces show a lower hit ratio at the client sites. This means that in reality, polling-

CLIENT

Short-term
cache

Long-term
cache

Proxy
(Web-proxy)

Cache
Manager

HTTP
Server

Server
Database

Remote
Cache

Daemon

14

every-time performs even worse than the results shown in [3]. In my opinion, I would not

recommend polling-every-time because it sends validation message to web server

whenever there is a user request, even though the requested object is in the cache. This is

not an efficient way to reduce client latency, although it can reduce unnecessary file

transfer across the network.

Update threshold is [2]’s favorite based on the experiment results. However, it is not

easy to decide the individual update threshold value for each document. Currently the

value is configured manually by the cache administrator, which creates a long distance

from perfection. The same problem applies to TTL.

One major problem with invalidation approaches is that they are often expensive.

This is because the server has to maintain a list of client caches that contain copies of

certain documents. Once the document is changed, the server needs to send invalidation

messages to all the client caches on the list. Not to mention the overhead for the server to

send the control messages, the server might need fairly large storage space for such a list.

Another problem with invalidation is how to deal with failures. If the server crashes,

the user request could still be responded with the cached document even though it might

be stale. But if a client cache crashes, the server will not receive acknowledgement from

the cache after it sends out invalidation messages. The server has to keep on trying,

because otherwise the cache will never know that the document it caches is stale. If we

take network partition into consideration, The time taken for the server invalidation

message to reach the client might be rather long, even an extended period of time, during

which the user will view stale documents without knowing it. [3] suggests that the only

way to deal with such kind of problem is to have the client cache to contact the server

from time to time to make sure that the network connection is OK and the server is up.

There are a number of ways to improve the current cache consistency approaches. In

my opinion, adaptive TTL is pretty attractive, if the rate of stale hits could be kept under

5% or even lower. Therefore we could add some invalidation function to the server. In

order to minimize the server storage overhead, we assume clients that request a certain

document within 3 days are interested in being notified for invalidation. If the document

is changed and right at the moment the server load is not high, it will send invalidation

message out to those client caches that requested the document in the past 3 days. In this

15

way, there is not much overhead generated at server side, while the cache stale hit rate

could be effectively reduced.

As strong advocates of invalidation approach, Cao and Liu [3] presented their

improvement solution, which is called “two-tier- lease-augmented invalidation”. First they

add a “lease” field to all the documents sent from the server to a client cache. In this way

the server promises to notify the client by sending invalidation message if the document

changes before the lease expires. Meanwhile, the client promises to send an “if-modified-

since” message to the server once the lease expires to validate the freshness of the

document. In this way, the server doesn’t have to remember all the client caches that keep

a copy of the document, instead it only needs to remember clients whose leases have not

expired yet, thus saves storage space on the server.

Second, for regular “get-object” requests, the server assigns a very short lease value

(could be zero), and a regular lease to “if-modified-since” requests. In this way the server

could filter out the client list and keep only those caches requesting to view the document

for the second time. In this way the server storage overhead can be further reduced.

Cao and Liu also suggested improvement to their implementation in order to avoid

the worst-case latency problem, by creating separate process to deal with sending out

invalidation messages.

As an enhancement to weak cache consistency, A mechanism called pre-fetching

could be used to reduce the number of stale documents forwarded to the end-user. It also

reduces the delay resulting from reloading the new version of the document when it is

requested. Pre-fetching is initiated by the cache server (probably proxy server). The

documents are pre-fetched or more precisely “re-fetched” before they are requested.

Usually, documents are pre-fetched because they are out-of-date or they will become

stale in the near future.

Pre-fetching introduces both new traffic and additional processing to the cache server.

A trade-off has to be made between the gain resulting from pre-fetching and its side

effects on the network traffic and the cache server overload. The ideal implementation of

pre-fetching should optimize two factors: the frequency at which the documents are pre-

fetched and which documents are pre-fetched. In order not to overload the cache server,

pre-fetching could be performed when the cache server is not busy with the users’

16

requests, for instance, during night hours where both the network and the cache are not

submitted to heavy loads.

There are still other possible ways to refine the current cache consistency approaches

for Web. Next section we will look into the cache consistency algorithms for client/server

environment and try to come up with a feasible mechanism that could be used for the

WWW.

4. Cache Consistency in Transactional Client/Server

Environment

The web is fundamentally different from a distributed file system in its access

patterns. Comparing to cache consistency issues in transactional Client/Server

environment, those for the Internet might be much simpler because conflicting updates

resulted from concurrently running transactions will never occur in a web environment.

However, it is beneficial to study the consistency algorithms in client/server architecture

in order to find some good approaches suitable for the Internet.

Figure 4 shows a reference architecture for a data-shipping client/server DBMS. The

DBMS consists of two types of processes that are distributed throughout the network.

First, each client workstation runs a Client DBMS process, which is responsible for

providing access to the database for the applications running at the local workstation.

Applications send database access requests to their local client DBMS process, which

executes the request, in turn sending requests for transaction support and for specific data

items to the Server DBMS processes. Server DBMS processes are the actual owner of

data, and are ultimately responsible for preserving the integrity of the data and enforcing

transaction semantics. The Server DBMS processes manage the stable storage on which

the permanent version of the database and the log reside.

In a client/server environment, in order to reduce network traffic, data is cached at

client site. But whenever there is cache technology, there comes the issue for consistency

as well. Cache consistency protocols for client/server database systems have been the

subject of much study in recent years and at least a dozen different algorithms have been

17

proposed and studied in the literature ([1], [5], [6]). [1] provides a taxonomy that

categorizes most of the proposed transactional cache consistency algorithms based on

whether they detect or avoid access to stale data. This is somewhere similar to the

concept of weak and strong consistency in Web context. In fact, the similarity is not

limited to category itself, but the way consistency is enforced and the time it is enforced.

This survey will not go too much deep into each individual algorithm. Instead the focus

of this section will be on how the algorithms are categorized, their similarity and

differences from a conceptual point of view.

Figure 4: Reference architecture for a data-shipping DBMS [1]

Most cache consistency algorithms in client/server architecture could be categorized

into detection-based or avoidance-based, depending on the choice of Invalid Access

Prevention [1]. Algorithms that use avoidance for invalid access prevention ensure that at

any time, all cached data is up-to-date. Those that use detection allow stale data to remain

in client caches and ensure that transactions are allowed to commit only if it can be

verified that they have not accessed such stale data.

Lock & Copy
Table

Server
DBMS

Buffer pool

Log Disk

Database
Disks

Client
Disk

Client
DBMS

lock
Manager

Appli-
cation

Appli-
cation

data
 cache

Client
Disk

Client
DBMS

lock
Manager

Appli-
cation

Appli-
cation

data
 cache

...

...

Workstation 1 Workstation n

Lock & Copy
Table

Server
DBMS

Buffer pool

Log Disk

Database
DisksServer 1 Server m

18

Transactional cache consistency maintenance algorithms must ensure that no

transactions that access stale data are allowed to commit. A little bit different from the

Web context, in a transactional client/server environment, a data item is considered to be

stale if its value is older than the item’s latest committed value. The taxonomy in [1]

partitions consistency maintenance algorithms into two classes according to whether their

approach to preventing stale data access is detection-based or avoidance-based.

Detection-based algorithms require a transaction to check the validity of accessed data

before or at the point when the transaction commits, while avoidance-based algorithms

ensure that stale data is removed from client caches as early as possible.

4.1 Detection-based Algorithms

Detection-based algorithms allow stale data copies to reside in a client’s cache for

some period of time. Transactions must therefore check the validity of any cached page

that they access before they can be allowed to commit. The server is responsible for

maintaining information that will enable clients to perform this validity checking. There

are three levels of differentiation in the detection-based side of the taxonomy: validity

check initiation, change notification hints, and remote update action.

• Validity Check Initiation. This level of differentiation is the coarsest, based on

when the validity of accessed data is checked by the transaction. In order for a

transaction to successfully commit, the validity of any accessed data must be

checked before the commit actually happens. There can be three possible classes

of validity checking strategies:

Ø Synchronous, on each initial access to a page (cached or otherwise) by a

transaction.

Ø Asynchronous, with checking initiated on the initial access, but the transaction

does not wait for the result of the check.

Ø Deferred, until a transaction enters its commit processing phase.

All these three classes ensure that once the validity of data is confirmed, it will

remain valid till the end of the transaction. To guarantee this rule, the server must

19

not allow other transactions to commit updates to such items until a transaction

that has received a validity guarantee finishes. This is obviously more

complicated that Web environment, where under most cases only the Web server

has the authorization to modify its objects.

These three classes provide a range from pessimistic (synchronous) to optimistic

(deferred) techniques. Therefore they represent different tradeoffs between

checking overhead and possible transaction aborts. The asynchronous approach is

a compromise. It aims to mitigate the cost of interaction with the server by

removing it from the critical path of transaction execution, while at the same time

lowering the abort rate and/or cost through the earlier discovery of conflicts.

• Change Notification Hints. Since the communication with the server is always

an expensive operation, designers of detection-based algorithms often use

optimism to reduce this cost. Optimistic techniques are oriented towards

environments in which conflicts are rare and the cost of detecting conflicts is

high. However, for frequently accessed data, a more pessimistic approached is

used to ensure the validity of the data. Such technique is called change

notification hints. A notification is an action that is sent to a remote client as the

result of an update that may impact the validity of an data item cached at that

client. Purging or updating a stale copy removes the risk that a subsequent

transaction will be forced to abort as a result of accessing it.

• Remote Update Action. This is the final level of differentiation in the detection-

based half of the taxonomy, which is concerned with the action taken when a

notification arrives at a remote site. There are three options here: propagation,

invalidation, and choosing dynamically between the two. Propagation results in

the newly updated value being installed at the remote site in place of the stale

copy. Invalidation, on the other hand, simply removes the stale copy from the

remote cache so that it will not be accessed by any subsequent transactions. After

a page copy is invalidated at a site, any subsequent transaction that wishes to

access the page at that site must obtain a new copy from the server. A dynamic

20

algorithm can choose between invalidation and propagation heuristically in order

to optimize performance for varying workloads.

4.2 Avoidance-based Algorithms

Avoidance-based algorithms enforce cache consistency by making it impossible for

transactions to ever access stale data in their local cache. These algorithms use a read-

one/write-all (ROWA) approach to replica management, which ensures that all existing

copies of an updated item have the same value when an updating transaction commits.

All of the avoidance-based algorithms mentioned in [1] require that the server keep track

of the location of all page copies. There are four levels in the avoidance-based half of the

taxonomy: write intention declaration, write permission duration, remote conflict priority,

and remote update action.

• Write Intention Declaration. While all of the avoidance-based algorithms use

the same policy for handling page reads, they differ in the manner in which

consistency actions for updates are initiated. When a transaction wishes to update

a cached page copy, the server must be informed of this write intention sometime

prior to transaction commit so that it can implement the ROWA protocol. A write

permission fault is said to occur when a transaction attempts to update a page

copy for which it does not possess write permission. The taxonomy contains three

options for when clients must declare their intention to write a page to the server:

Ø Synchronous, on a write permission fault.

Ø Asynchronous, initiated on a write permission fault.

Ø Deferred, until the updating transaction enters its commit processing phase.

The tradeoffs among synchrony, asynchrony and deferral for write intentions are

similar to those previously discussed for the detection-based algorithms:

synchronous algorithms are pessimistic, deferred ones are optimistic, and

asynchronous ones are a compromise between the two.

• Write Permission Duration. In addition to when write intentions are declared,

avoidance-based algorithms can also be differentiated according to how long

21

write permission is retained for. There are two choices at this level of the

taxonomy: write permissions can be retained only for the duration of a particular

transaction, or they can span multiple transactions at a given client. In the first

case, transactions start with no write permissions, so they must eventually declare

write intentions for all pages that they wish to update; at the end of the

transaction, all write permission are automatically revoked by the server. In the

second case, a write permission can be retained at a client site until the client

chooses to drop the permission or until the server asks a client to drop its write

permission.

• Remote Conflict Priority. The third level of differentiation for avoidance-based

algorithms is the priority given to consistency actions when they are released at

remote clients. There are two options here: wait and preempt. A wait policy states

that consistency actions that conflict with the operation of an ongoing transaction

at a client must wait for that transaction to complete. In contrast, under a preempt

policy, ongoing transactions can be aborted as the result of an incoming

consistency action.

• Remote Update Action. The final level on the avoidance-based side of the

taxonomy is based on how remote updates are implemented. The options here are

the same as in the detection-based case, namely: invalidation, propagation, and

choosing dynamically between the two. An important difference between remote

update actions under the avoidance-based algorithms and under the detection-

based ones is that in the avoidance-based case, the remote operations are initiated

and must be completed on behalf of a transaction before the transaction is allowed

to commit. This is necessary to maintain the ROWA semantic guarantees that

provide the basis for the correctness of avoidance-based algorithms. Therefore, if

update propagation is used, all remote sites that receive the propagated update

must participate in a two-phase commit with the server and the client at which the

transaction is executing. In contrast, invalidation does not require two-phase

22

commit, because in this case, data is simply removed from the remote client

caches.

There are many different ways to categorize various cache consistency algorithms for

transactional client/server environment. The taxonomy presented in [1] is just one of

them.

5. Conclusion and future work

Caching is currently the primary mechanism for reducing the latency as well as

bandwidth requirements for delivering Web contents. This survey has compared weak

cache consistency and strong cache consistency algorithms that are used in the Web

environment, from conceptual point of view as well as the experiment results from

various research papers ([2], [3], [4]). It also discussed a taxonomy that categorizes

different cache consistency algorithms that are applied under transactional client/server

environments. Although in the Web environment, there is no need to consider

transactional commitment, we could still perform the consistency check asynchronously

in order to leverage the server load, which is one of the possible ways to apply

transactional cache consistency algorithms to Web environment. We could also apply

“change notification hints” method to cached documents based on their popularity. I

guess this is how the idea of adaptive TTL came from.

WWW is simply another huge client/server environment. Each computer an end user

uses is just a small node within the Web. In order to access contents on a certain Web

server, the user request might first go through a proxy server, or even a wide area

network that connects this small node to the Web. Although the situation of WWW might

be more complicated, one good news is that it is not transactional, i.e., the Web server

doesn’t need to worry about whether a client transaction is about to commit, or grant

write permission to the client.

A choice has to be made whether to use weak or strong cache consistency, i.e., for the

cache, whether to ensure the document freshness all the time, or just validate the objects

after certain time interval. In my opinion, we could combine these approaches to

maximize their advantages. I plan to study further into web caching algorithms, possibly

23

from those caching algorithms for a distributed client/server environment, and apply them

to fit in the Web environment. If an algorithm could perform well in a general distributed

environment, it could probably be a good candidate for the Web as well. There are also

possible directions such as the two-level- lease cache consistency algorithm introduced in

[3], and pre-fetching techniques that could possibly be implemented on the cache server

side. This should be an interesting subject for research.

Reference

[1] Michael J. Franklin, Michael J. Carey and Miron Livny. Transactional client-

server cache consistency: Alternatives and performance. ACM Transaction on Database

Systems, 1997.

[2] James Gwertzman and Margo Seltzer. World-Wide Web Cache Consistency.

International Conference USENIX, San Diego, CA, 1996

[3] Pei Cao and Chengjie Liu. Maintaining Strong Cache Consistency in the World-

Wide Web. Proceedings of the 17th International Conference on Distributed Computing

Systems (ISDCS ’97), 1997

[4] Duane Wessels. Intelligent Caching for World-Wide Web Objects. International

Conference of the Internet Society (INET), Honolulu, HI, 1995

[5] Yongdong Wang and Lawrence A. Rowe. Cache consistency and concurrency

control in a client/server DBMS architecture. Proceedings of the ACM SIGMOD

Conference on Management of Data (Denver, CO), 367-377, May 1991.

[6] Kevin Wilkinson and Marie-Anne Neimat. Maintaining Consistency of Client-

Cached Data. Proceedings of the Conference on VLDB (Brisbane, Australia), 122-134,

1990.

24

[7] A. Bestavros. Speculative Data Dissemination and Service to Reduce Server

Load, Network Traffic and Service Time for Distributed Information Systems.

Proceedings of International Conference on Data Engineering, New Orleans, Louisiana,

March 1996.

[8] V. Cate. Alex – A Global File system. Proceedings of the 1992 USENIX File

System Workshop, Ann Arbor, MI, 1-12, May 1992

[9] A. Luotonen, H. Frystyk and T. Berners-Lee. W3C httpd.

http://www.w3.org/hypertext/WWW/Daemon/Status.html.

