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Abstract 

This survey focuses mainly on the problem of cache consistency on the World-Wide 

Web (WWW). So far there is no perfect algorithm that deals with cache consistency 

issues that result from using web caching to reduce client latency and traffic. The survey 

first studies several web caching consistency approaches such as adaptive TTL, update 

threshold, polling-every-time, and invalidation, then compares various cache consistency 

algorithms used in transactional client/server DBMS architecture, trying to get a 

conclusion on what might be a good cache consistency algorithm for web caching. Each 

individual algorithm has its advantage given certain criteria. A good cache consistency 

algorithm should be able to deal with different user demands and network situations.   

  

1. Introduction 

The rapid increase in web usage has led to dramatically increased loads on the 

network infrastructure and on individual web servers. To ameliorate these mounting 

burdens, there has been much recent interest in web caching architectures and algorithms. 

Web caching reduces network load, server load, and the latency of responses. In the 

context of WWW, caches act as intermediate systems that intercept the end-users’ 

requests before they arrive at the remote server. A web cache checks if the requested 

information is available in its local storage, if yes, a reply is sent back to the user with the 

requested data; otherwise the cache forwards the request on behalf of the user to either 

another cache or to the original server. When the cache receives back the data, it keeps a 

copy in its local storage and forwards back the results to the user. The copies kept in the 

cache are used for subsequent users’ requests.  
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There are two basic types of web cache currently being used: browser cache and 

proxy cache. Browser cache is implemented by the local browser software such as  

Netscape or Internet Explorer. Basically the hard disk of the end user’s computer has a 

section that stores objects the user accessed before. This cache is useful when the user 

hits the ‘back’ button to go to a page he/she visited before. Those cached pages will be 

read from the local cache almost instantaneously.  

Proxy cache works on the same principle, but a much larger scale. Proxies serve 

hundreds or thousands of users in the same way; large corporations and ISP’s often set 

them up on their firewalls. Because proxy caches usually have a large number of users 

behind them, they are very good at reducing latency and traffic. That’s because popular 

objects are requested only once, and served to a large number of clients. Figure 1 is a 

general structure of web cache.  

 

 

Figure 1: general structure of Web cache 

 

However, caching has not only brought solutions on faster access to the Internet 

community, it has also introduced new issues and challenges. In essence, there is a 
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original server. By introducing caching mechanism, multiple copies of the requested data 

are created and stored in various caches all over the Internet. How to keep them 

consistent while considering the network traffic and client response delay, when to issue 

validation or invalidation message, which part, client cache or the web server, should 

issue such kind of message, these problems created an interesting area for research.  

If we consider the heterogeneity nature of the WWW, the  consistency problem 

becomes even more complicated. However, it is out of the scope of this survey. This 

survey will focus only on various approaches for current web caching, as well as existing 

cache consistency algorithms used in client-server architecture, assuming both client and 

server use compatible platforms.   

The next section focuses on cache consistency approaches for the Internet; Section 3 

gives comparison, limitations and possible improvements of these consistency 

approaches; Section 4 focuses on existing algorithms in client/server environment, their 

features based on a taxonomy. Section 5 concludes the survey and summarizes the 

possible future work to be done.   

 

2. Cache Consistency for the Internet 

The value of cache is greatly reduced if cached copies are not updated when the 

original data change. Cache consistency mechanisms ensure that cached copies of data 

are eventually updated to keep consistency with the original data. An ideal cache 

consistency solution will enforce the consistency to the maximum extent, while reducing 

the network bandwidth consumption and server load. There are basically two categories 

of cache consistency approaches: weak cache consistency and strong cache 

consistency. [3] gave a definition on these two terms. Weak cache consistency is the 

model in which client response time is more emphasized, but a stale document might be 

returned to the user; strong cache consistency, on the other hand, enforces the freshness 

of document all the time, but has the expense of extra server resource consumption.  

2.1 Weak Cache Consistency 

Existing Web caches mostly provide weak consistency, which means it is possible for 

the user to get a stale document from the cache, because at the moment, the contents on 
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the web server have changed but the cache hasn’t done the synchronization yet. Two 

mechanisms fall into this category: TTL (Time-To-Live) and Client Polling. Their feature 

in common is that the client cache, who initiates the consistency process, sends validation 

messages to server.  

2.1.1 TTL (Time-To-Live) 

Under this approach, each object (document, image file, etc.) is assigned a TTL (time 

to live) value, such as two hours or one day. This value is an estimate of the object’s 

lifetime, after which it’s supposed to change. When the TTL expires, the data is 

considered invalid, and the next request for the object will cause the object to be 

requested from the original server. A slight improvement to this basic mechanism is that 

when a request for an expired object is sent to the cache, instead of requesting file 

transfer from the server, the cache first sends an “if-modified-since” control message to 

the server to check whether a file transfer is necessary.  

TTL-based strategies are simple to implement, by using the “expires” header field in 

HTTP format. Following is an example of an HTTP header that applies the “expires” 

field:  
 

HTTP/1.1 200 OK 
Date: Fri, 09 Feb 2001 10:19:29 GMT 
Server: Apache/1.3.3 (Unix) 
Cache-Control: max-age=3600, must-revalidate 
Expires: Fri, 09 Feb 2001 11:19:29 GMT 
Etag: “3e86-410-3596fbbc” 
Content-Length: 1040 
Content-Type: text/html 
… 

 

The HTML document would follow these headers, separated by a blank line.  

The challenge in supporting this approach lies in selecting an appropriate TTL value. 

If the value is too small, after a short period of time the cached copy will be considered 

stale. Therefore a number of “if-modified-since” messages will be sent to server 

frequently for expiration check, which results in extra network traffic (although it might 

be trivial comparing to the actual file transfer) and server overhead. On the other hand, if 
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the value is too big, out-of-date document may be returned to the end-user because the 

cache still thinks it’s fresh while the document has already been modified by the server.   

The critical issue for this approach is how to choose the TTL value. [2] initially used 

a flat lifetime assumption for their simulation, which means that they assigned all objects 

with equal TTL values. This resulted in poor performance in their experiment. Later on 

they modified the TTL value based on the popularity of the file. This is also mentioned in 

[3], which defined this improved approach as adaptive TTL. Adaptive TTL takes 

advantage of the fact that file lifetime distribution is not flat. If a file has not been 

modified for a long time, it tends to stay unchanged. [2] also mentioned that globally 

popular files are the least likely to change. By using adaptive TTL, the probability of 

stale documents is kept under reasonable bounds (<5%) [2].  

 

2.1.2 Client Polling 

Client polling is another approach of weak cache consistency. It means the client 

(cache) periodically checks back with the server to determine if cached objects are still 

valid. It is somewhat like the adaptive TTL, because under both cases the client sends out 

validation message to check if the document is still valid, when the client starts to think 

the document might be stale. Alex FTP cache [6] uses an update threshold to determine 

how frequent to poll the server. The update threshold is expressed as a percentage of the 

object’s age. An object is invalidated when the time since last validation exceeds the 

update threshold times the object’s age [2]. For example, consider a cached file whose 

age is 30 days and whose validity was checked one day ago. If the update threshold is set 

to 10%, then the object should be marked as invalid after 3 days (10% * 30 days). Since 

the object was checked yesterday, requests that occur during the next two days will be 

satisfied locally, and there will be no communication with the server including control 

message. After the two days have elapsed, the file will be marked invalid, and the next 

request for the file will cause the cache to retrieve a new copy of the file from the server. 

Same as TTL, the trick here is how to decide the update threshold.  
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2.2 Strong Cache Consistency 

We could see from the introduction of weak cache consistency that weak consistency 

methods save network traffic and user latency at the expense of returning stale documents 

to the users. Under situations where document modification doesn’t happen very 

frequently, or user doesn’t have strict requirement on the freshness of the document, 

weak cache consistency is an economic approach. However, if the validity of the data is 

important (such as stock quote), then a strong consistency has to be enforced. The two 

widely accepted methods for strong cache consistency are invalidation and polling-every-

time.  

 

2.2.1 Invalidation 

Many distributed file systems rely on this method to ensure that cached copies never 

become stale. In the web environment, this simple method also applies because 

conflicting updates never happen (if there are conflicting updates, what we need is a more 

complicated transactional consistency algorithm). Under this mechanism, the web server 

plays a crucial role. It is responsible for keeping track of the cached data. The server 

implements this by keeping all cache addresses that have the copy of the data. Once the 

data is modified on the server, the server sends out message to notify the caches on the 

list that their data are no longer valid. This notification process is considered complete 

only after all the clients on the list have received the message. Invalidation guarantees 

that when the user requests a document, the returned document is up-to-date. The trade-

off is the overhead at server side. 

 

2.2.2 Polling-every-time 

 This method is an extreme case of client polling that is used in weak cache 

consistency. Under this approach, whenever the client cache receives a document request 

from the end user and there happens to be a copy in the cache, it will first contact the web 

server to validate the cached copy. If it’s fresh then the copy will be returned to the user, 

otherwise a new copy will be sent to cache and replace the old one. This approach also 

involves a lot of message transfer, possibly a large portion of which is useless. But given 
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a short lifetime of the objects and frequent requests from the user, this method is expected 

to be efficient.  

 

3. Comparison, limitations and Improvements of Web Cache 

Consistency Approaches 

3.1 Conceptual Differences 

Let’s take a look at the differences of the above mentioned cache consistency 

approaches from conceptual point of view: 

• TTL, adaptive TTL and Client Polling, as the weak consistency methods, assign 

the central role to the client cache. Whether the end user gets a fresh document or 

not all depends on how often the cache checks the validity of the document. 

Therefore weak consistency methods are time-based, the document lifetime, or 

the update threshold determines the trade-off between document freshness and 

network bandwidth.  

• Invalidation and Polling-every-time are event-driven. For invalidation method, the 

web server sends out invalidation message to caches only when its document is 

modified. For polling-every-time, whenever it receives a request from the end 

user, the client cache has to poll server to confirm whether the document is fresh. 

This also implies a possible heavy network traffic solely caused by all these 

control messages sent back and forth, which in turn results in the overhead of web 

server. The frequency of file update on the web server, or the frequency of user 

requests, greatly influence the network traffic and server load. Notice for strong 

cache consistency approaches, there is no trade-off to document freshness, 

because this is ensured by the protocol that the returned document is always fresh 

(if the time spent from server-send-out- invalidation-message to cache-receive-

message could be ignored).   
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3.2 Experimental Results 

Cao and Liu [3] implemented their experiments in a web caching system called 

Harvest, and compared the performance of adaptive TTL, invalidation and polling-every-

time by replaying web server traces through the prototype running on workstations 

connected by an Ethernet. They used five Web server traces from the Internet Traffic 

Archive. Let’s take the experiment results that got from two of them to analyze the 

limitations and benefits of each consistency approach. These two servers are: SASK (the 

Web server at the University of Saskatchewan, Saskatoon, Canada) and SDSC (the 

WWW server for the San Diego Supercomputer Center).  

 

 

Figure 2 Results from SASK & SDSC [3] 

 

• The documents modified on SASK server is much more than those on SDSC. 

This is reflected by the number of different types of messages recorded on SASK 

and SDSC. Take TTL as an example, on SASK it created almost twice as GET 

requests as it did on SDSC. Compared to the modified-files ratio (1148/57), this is 

not too bad. The number of If-modified-since messages tripled, while again Reply 

200 (reply with document follows) messages more than twice. One thing 

interesting and reasonable is that we could figure out the rough ratio of modified 

Trace Trace
Modification Modification
Approach TTL Polling Invalidation Approach TTL Polling Invalidation
Hits 16456 16565 16268 Hits 4907 4907 4905
Get Requests 35015 34906 35203 Get Requests 20523 20523 20525
If-Modified-Since 922 16565 0 If-Modified-Since 239 4907 0
Reply 200 35388 35689 35203 Reply 200 20535 20549 20525
Reply 304 549 15782 0 Reply 304 227 4881 0
Invalidations 0 0 6028 Invalidations 0 0 248
Total Messages 71874 102942 76434 Total Messages 41524 50860 41298
File Xfer bytes 185MB 187MB 183MB File Xfer bytes 263MB 263MB 263MB
Ctrl Msg bytes 3.91MB 7.09MB 4.29MB Ctrl Msg bytes 2.39MB 3.38MB 2.36MB
Messages bytes 189MB 194MB 187MB Messages bytes 265MB 266MB 265MB
Stale Hits < 410 0 0 Stale Hits < 14 0 0
Avg. Latency 0.124 0.138 0.134 Avg. Latency 0.16 0.173 0.165
Min Latency 0.010 0.039 0.010 Min Latency 0.010 0.038 0.010
Max Latency 32.1 12.2 107 Max Latency 12.2 12.2 12.2
Server CPU 26.0% 30.2% 27.6% Server CPU 34.1% 35.6% 32.7%
DISK RW/s .37;2.2 .41;2.3 .41;2.5 DISK RW/s .94;2.3 1.4;2.0 1.0;2.2

SASK, 51471 requests
1148 files modified

SDSC, 25430 requests
57 files modified
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files on each server by looking at the numbers of invalidation messages. 6028/248 

= 24.3, while 1148/57 = 20.1, which is roughly the same.   

• One result that worth paying attention to, I think, is the number of cache hits. 

Cache hits should be one of the most important factors to consider when 

evaluating the efficiency of a cache consistency algorithm, because it significantly 

reduces user latency. However, the numbers of cache hits in above two tables 

don’t indicate the exact responsiveness and efficiency of the specific approach, 

because in the experiments, a cache hit is counted when the document that an end-

user requests is in the cache. This doesn’t necessarily mean that document is 

fresh. For invalidation, when a cache hit happens, the cached document will be 

sent to the user immediately; but for polling-every-time, when this happens, the 

client cache will send a ‘if-modified-since’ control message to server to confirm 

the freshness of the document. For adaptive TTL, this issue also exists. When a 

cache hit happens, the cache will first check if the document has expired 

according to the TTL value. If it’s still valid the document will be sent out 

immediately, otherwise a control message will be sent to server.  

• For each approach, the sizes of control messages on SASK are bigger than those 

on SDSC, which is due to the much bigger number of modified files. But SASK 

recorded a smaller file transfer size than SDSC. Probably this is because the files 

modified on SDSC have much bigger sizes. 

• As invalidation messages are only generated in invalidation method, the stale hits 

only apply to weak consistency methods, i.e., adaptive TTL in [3]. If we compare 

the number of stale hits across the two tables, the one on SASK is much bigger 

than the number on SDSC, which result from the more frequency of file 

modification on the former.  

• In both tables, we can see that contacting the server at each cache hit costs 

polling-every-time a much higher minimum latency and higher average latency 

than the other two approaches. The numbers also show that invalidation has a 

significantly large worst-case latency, i.e., a request from the end user can be 

stalled somewhere in the network for a long time. The authors of [3] pointed out 
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that this is because their current implementation could only handle incoming 

requests after all invalidation messages for a document have been sent via TCP.  

• The last two rows in the above tables show the average server CPU utilization and 

disk read/write per second during the trace replay. Looking at the numbers, we 

could see that polling-every-time generally has a higher server CPU utilization, 

especially when the proxy cache hit ratio is high. This reflects the CPU cost of 

handling “if-modified-since” requests at the server.  

  

The experiment results of [3] show that the invalidation approach performs the best 

among the three consistency approaches. Adaptive TTL works very well at keeping stale 

hit ratio low, but invalidation does not cost more in comparison. Whether it is in terms of 

cache hits, network traffic, response time, or server loads, invalidation performs quite 

similar to adaptive TTL, while it always ensures the freshness of the document. From this 

aspect invalidation approach is much more attractive than other cache consistency 

methods. Of course, invalidation is a preferred method for maintaining strong consistency 

than polling-every-time. The reason is straightforward. Except in the extreme case of file 

lifetime on the order of minutes, polling-every-time produces too many useless control 

messages sent to server for document validity check, which results in extra network 

bandwidth consumption and server load.  

 

Gwertzman and Seltzer (G&S) [2] also used Harvest system to conduct their 

experiments. The difference is that they added Alex protocol [8] to their experiment, 

while eliminating the hierarchy factor of the Harvest system. This is because hierarchical 

caching structure significantly reduces the overhead for invalidation, which might not be 

a good factor in the experiments to compare these methods. The effect of hierarchical 

factor is also pointed out in [3], where the authors attributed their reason of eliminating 

the caching hierarchy to the fact that hierarchical caches are not yet widely present in the 

Internet.  

G&S’s simulation model is somewhat optimized by taking advantage of the 

combination of adaptive TTL and invalidation mechanisms. They used a lightweight 

cache server, which has an independent process that checks the freshness of the 
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documents periodically. Whether a document is stale or not is determined by using TTL 

values and invalidation callbacks from cooperating primary servers. The authors further 

optimized the invalidation protocol such that when the cache receives an invalidation 

notice, the document is marked as invalid but the cache will not retrieve the document 

immediately from server until the next user request comes. Although this will certainly 

increase latency in subsequent accesses to the document, it decreases bandwidth 

consumption if the document is not accessed again. The experiment results show that the 

cache miss rates improved dramatically because of this change.  

After a couple of experiments, G&S realized that they should change the flat lifetime 

distribution of documents because basically, different types of documents have various 

lifetime as well as access frequency. They gathered information from Microsoft proxy 

server and Boston University’s server log. Following is the data they summarized: 

File type %-age of 
total access 

Average 
File size(B) 

Average 
life-span (days) 

Median age (days) 

GIF 55% 7791 85 146 
HTML 22% 4786 50 146 
JPG 10% 21608 100 72 
CGI 9% 5980 NA NA 
Other 4% NA NA NA 

 

From the table we could see that image files (GIF and JPG) have a relatively long 

lifetime which means they are less likely to change. Meanwhile their sizes are relatively 

small (in the order of KB). This indicates that they are good candidates for caching. 

Based on this the authors concluded that weak cache consistency will be effective since 

the most popular web objects also have the longest life-span.  

G&S’s experiments show that the update threshold approach provides the best 

performance among TTL, invalidation and itself. It could produce a stale rate of less than 

5%. Meanwhile, it produces server load comparable to, or even less than that of the 

invalidation protocol with much less bookkeeping.  
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Figure 3: CERN Proxy cache logic [4] 

 

Different from the approaches mentioned above, Wessels [4] used the HTTP server 

developed by CERN [9] as a proxy cache for the experiments. Figure 3 illustrates the 

combined usage of client polling and TTL approaches in the proxy cache logic. Beside 

the proxy cache, the author also developed a cache management program that runs in 

conjunction with the proxy cache to add, update and expire cache objects at regular 

intervals. The interesting feature of Wessels’ experiments is a two- level cache, one called 

short-term, the other long-term. Which cache an object stays in is all controlled by the 

cache manager. Figure 4 illustrates the interaction of proxy/caching components of  the 

experiment model.  

[4] didn’t compare different cache consistency approaches. Instead, the author 

developed the software, which relies heavily on the proxy for cache consistency, but 

takes advantage of invalidation when available to provide fewer stale objects. The 

experiment results show the dramatic improvement of user response time by using the 

proxy cache. 
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Figure 4: Interaction of Proxy/Caching components [4] 

 

Wessles’ experiment indicates that using a proxy cache improves user response time. 

The cache manager plays a crucial role in this model because only it is responsible for the 

cache consistency.  

 

3.3 Limitations and Improvements 

Both [2] and [3] tried to find the best cache consistency method by conducting 

experiments in the environment they set up. However, besides the limitations of the 

different methods, their experiments have certain degrees of limitations as well.  

Weak cache consistency could be implemented where the object freshness demand 

from the end-user is not so strict. For example, it could be used for online newspapers 

that change daily. However, at the situation such as online weather forecast, or stock 

quote, where the requested document must always be up-to-date, a strong cache 

consistency mechanism has to be implemented.  

The trace replay in [3] is performed in a local area network instead of the Internet. 

Under this environment, client response time is certainly much better than a real Web 

environment. The simulated environment is comparable to a high-speed, high-

performance wide area network, but it cannot reflect the actual bandwidth of the Internet. 

The other point is that the experiments use server traces instead of client or proxy caches. 

Because the user requests seen by the server are partially filtered by client caches already, 

server traces show a lower hit ratio at the client sites. This means that in reality, polling-
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every-time performs even worse than the results shown in [3]. In my opinion, I would not 

recommend polling-every-time because it sends validation message to web server  

whenever there is a user request, even though the requested object is in the cache. This is 

not an efficient way to reduce client latency, although it can reduce unnecessary file 

transfer across the network.  

Update threshold is [2]’s favorite based on the experiment results. However, it is not 

easy to decide the individual update threshold value for each document. Currently the 

value is configured manually by the cache administrator, which creates a long distance 

from perfection. The same problem applies to TTL.  

One major problem with invalidation approaches is that they are often expensive. 

This is because the server has to maintain a list of client caches that contain copies of 

certain documents. Once the document is changed, the server needs to send invalidation 

messages to all the client caches on the list. Not to mention the overhead for the server to 

send the control messages, the server might need fairly large storage space for such a list.  

Another problem with invalidation is how to deal with failures. If the server crashes, 

the user request could still be responded with the cached document even though it might 

be stale. But if a client cache crashes, the server will not receive acknowledgement from 

the cache after it sends out invalidation messages. The server has to keep on trying, 

because otherwise the cache will never know that the document it caches is stale. If we 

take network partition into consideration, The time taken for the server invalidation 

message to reach the client might be rather long, even an extended period of time, during 

which the user will view stale documents without knowing it. [3] suggests that the only 

way to deal with such kind of problem is to have the client cache to contact the server 

from time to time to make sure that the network connection is OK and the server is up.  

There are a number of ways to improve the current cache consistency approaches. In 

my opinion, adaptive TTL is pretty attractive, if the rate of stale hits could be kept under 

5% or even lower. Therefore we could add some invalidation function to the server. In 

order to minimize the server storage overhead, we assume clients that request a certain 

document within 3 days are interested in being notified for invalidation. If the document 

is changed and right at the moment the server load is not high, it will send invalidation 

message out to those client caches that requested the document in the past 3 days. In this 
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way, there is not much overhead generated at server side, while the cache stale hit rate 

could be effectively reduced.  

As strong advocates of invalidation approach, Cao and Liu [3] presented their 

improvement solution, which is called “two-tier- lease-augmented invalidation”. First they 

add a “lease” field to all the documents sent from the  server to a client cache. In this way 

the server promises to notify the client by sending invalidation message if the document 

changes before the lease expires. Meanwhile, the client promises to send an “if-modified-

since” message to the server once the lease expires to validate the freshness of the 

document. In this way, the server doesn’t have to remember all the client caches that keep 

a copy of the document, instead it only needs to remember clients whose leases have not 

expired yet, thus saves storage space on the server.  

Second, for regular “get-object” requests, the server assigns a very short lease value 

(could be zero), and a regular lease to “if-modified-since” requests. In this way the server 

could filter out the client list and keep only those caches requesting to view the document 

for the second time. In this way the server storage overhead can be further reduced.  

Cao and Liu also suggested improvement to their implementation in order to avoid 

the worst-case latency problem, by creating separate process to deal with sending out 

invalidation messages. 

As an enhancement to weak cache consistency, A mechanism called pre-fetching 

could be used to reduce the number of stale documents forwarded to the end-user. It also 

reduces the delay resulting from reloading the new version of the document when it is 

requested. Pre-fetching is initiated by the cache server (probably proxy server). The 

documents are pre-fetched or more precisely “re-fetched” before they are requested. 

Usually, documents are pre-fetched because they are out-of-date or they will become 

stale in the near future.  

Pre-fetching introduces both new traffic and additional processing to the cache server. 

A trade-off has to be made between the gain resulting from pre-fetching and its side 

effects on the network traffic and the cache server overload. The ideal implementation of 

pre-fetching should optimize two factors: the frequency at which the documents are pre-

fetched and which documents are pre-fetched. In order not to overload the cache server, 

pre-fetching could be performed when the cache server is not busy with the users’ 
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requests, for instance, during night hours where both the network and the cache are not 

submitted to heavy loads.  

 

There are still other possible ways to refine the current cache consistency approaches 

for Web. Next section we will look into the cache consistency algorithms for client/server 

environment and try to come up with a feasible mechanism that could be used for the 

WWW.  

 

4. Cache Consistency in Transactional Client/Server 

Environment 

The web is fundamentally different from a distributed file system in its access 

patterns. Comparing to cache consistency issues in transactional Client/Server 

environment, those for the Internet might be much simpler because conflicting updates 

resulted from concurrently running transactions will never occur in a web environment. 

However, it is beneficial to study the consistency algorithms in client/server architecture 

in order to find some good approaches suitable for the Internet.  

Figure 4 shows a reference architecture for a data-shipping client/server DBMS. The 

DBMS consists of two types of processes that are distributed throughout the network. 

First, each client workstation runs a Client DBMS process, which is responsible for 

providing access to the database for the applications running at the local workstation. 

Applications send database access requests to their local client DBMS process, which 

executes the request, in turn sending requests for transaction support and for specific data 

items to the Server DBMS processes. Server DBMS processes are the actual owner of 

data, and are ultimately responsible for preserving the integrity of the data and enforcing 

transaction semantics. The Server DBMS processes manage the stable storage on which 

the permanent version of the database and the log reside.  

In a client/server environment, in order to reduce network traffic, data is cached at 

client site. But whenever there is cache technology, there comes the issue for consistency 

as well. Cache consistency protocols for client/server database systems have been the 

subject of much study in recent years and at least a dozen different algorithms have been 
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proposed and studied in the literature ([1], [5], [6]). [1] provides a taxonomy that 

categorizes most of the proposed transactional cache consistency algorithms based on 

whether they detect or avoid access to stale data. This is somewhere similar to the 

concept of weak and strong consistency in Web context. In fact, the similarity is not 

limited to category itself, but the way consistency is enforced and the time it is enforced. 

This survey will not go too much deep into each individual algorithm. Instead the focus 

of this section will be on how the algorithms are categorized, their similarity and 

differences from a conceptual point of view.  

 

 

Figure 4: Reference architecture for a data-shipping DBMS [1] 

 

Most cache consistency algorithms in client/server architecture could be categorized 

into detection-based or avoidance-based, depending on the choice of Invalid Access 

Prevention [1]. Algorithms that use avoidance for invalid access prevention ensure that at 

any time, all cached data is up-to-date. Those that use detection allow stale data to remain 

in client caches and ensure that transactions are allowed to commit only if it can be 

verified that they have not accessed such stale data.  
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Transactional cache consistency maintenance algorithms must ensure that no 

transactions that access stale data are allowed to commit. A little bit different from the 

Web context, in a transactional client/server environment, a data item is considered to be 

stale if its value is older than the item’s latest committed value. The taxonomy in [1] 

partitions consistency maintenance algorithms into two classes according to whether their 

approach to preventing stale data access is detection-based or avoidance-based. 

Detection-based algorithms require a transaction to check the validity of accessed data 

before or at the point when the transaction commits, while avoidance-based algorithms 

ensure that stale data is removed from client caches as early as possible.  

 

4.1 Detection-based Algorithms 

Detection-based algorithms allow stale data copies to reside in a client’s cache for 

some period of time. Transactions must therefore check the validity of any cached page 

that they access before they can be allowed to commit. The server is responsible for 

maintaining information that will enable clients to perform this validity checking. There 

are three levels of differentiation in the detection-based side of the taxonomy: validity 

check initiation, change notification hints, and remote update action.  

• Validity Check Initiation. This level of differentiation is the coarsest, based on 

when the validity of accessed data is checked by the transaction. In order for a 

transaction to successfully commit, the validity of any accessed data must be 

checked before the commit actually happens. There can be three possible classes 

of validity checking strategies: 

Ø Synchronous, on each initial access to a page (cached or otherwise) by a 

transaction. 

Ø Asynchronous, with checking initiated on the initial access, but the transaction 

does not wait for the result of the check. 

Ø Deferred, until a transaction enters its commit processing phase. 

 

All these three classes ensure that once the validity of data is confirmed, it will 

remain valid till the end of the transaction. To guarantee this rule, the server must 
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not allow other transactions to commit updates to such items until a transaction 

that has received a validity guarantee finishes. This is obviously more 

complicated that Web environment, where under most cases only the Web server 

has the authorization to modify its objects.  

These three classes provide a range from pessimistic (synchronous) to optimistic 

(deferred) techniques. Therefore they represent different tradeoffs between 

checking overhead and possible transaction aborts. The asynchronous approach is 

a compromise. It aims to mitigate the cost of interaction with the server by 

removing it from the critical path of transaction execution, while at the same time 

lowering the abort rate and/or cost through the earlier discovery of conflicts.  

 

• Change Notification Hints. Since the communication with the server is always 

an expensive operation, designers of detection-based algorithms often use 

optimism to reduce this cost. Optimistic techniques are oriented towards 

environments in which conflicts are rare and the cost of detecting conflicts is 

high. However, for frequently accessed data, a more pessimistic approached is 

used to ensure the validity of the data. Such technique is called change 

notification hints. A notification is an action that is sent to a remote client as the 

result of an update that may impact the validity of an data item cached at that 

client. Purging or updating a stale copy removes the risk that a subsequent 

transaction will be forced to abort as a result of accessing it.  

 

• Remote Update Action. This is the final level of differentiation in the detection-

based half of the taxonomy, which is concerned with the action taken when a 

notification arrives at a remote site. There are three options here: propagation, 

invalidation, and choosing dynamically between the two. Propagation results in 

the newly updated value being installed at the remote site in place of the stale 

copy. Invalidation, on the other hand, simply removes the stale copy from the 

remote cache so that it will not be accessed by any subsequent transactions. After 

a page copy is invalidated at a site, any subsequent transaction that wishes to 

access the page at that site must obtain a new copy from the server. A dynamic 
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algorithm can choose between invalidation and propagation heuristically in order 

to optimize performance for varying workloads. 

 

4.2 Avoidance-based Algorithms 

Avoidance-based algorithms enforce cache consistency by making it impossible for 

transactions to ever access stale data in their local cache. These algorithms use a read-

one/write-all (ROWA) approach to replica management, which ensures that all existing 

copies of an updated item have the same value when an updating transaction commits. 

All of the avoidance-based algorithms mentioned in [1] require that the server keep track 

of the location of all page copies. There are four levels in the avoidance-based half of the 

taxonomy: write intention declaration, write permission duration, remote conflict priority, 

and remote update action.  

• Write Intention Declaration. While all of the avoidance-based algorithms use 

the same policy for handling page reads, they differ in the manner in which 

consistency actions for updates are initiated. When a transaction wishes to update 

a cached page copy, the server must be informed of this write intention sometime 

prior to transaction commit so that it can implement the ROWA protocol. A write 

permission fault is said to occur when a transaction attempts to update a page 

copy for which it does not possess write permission. The taxonomy contains three 

options for when clients must declare their intention to write a page to the server: 

Ø Synchronous, on a write permission fault. 

Ø Asynchronous, initiated on a write permission fault. 

Ø Deferred, until the updating transaction enters its commit processing phase. 

The tradeoffs among synchrony, asynchrony and deferral for write intentions are 

similar to those previously discussed for the detection-based algorithms: 

synchronous algorithms are pessimistic, deferred ones are optimistic, and 

asynchronous ones are a compromise between the two.  

 

• Write Permission Duration. In addition to when write intentions are declared, 

avoidance-based algorithms can also be differentiated according to how long 
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write permission is retained for. There are two choices at this level of the 

taxonomy: write permissions can be retained only for the duration of a particular 

transaction, or they can span multiple transactions at a given client. In the first 

case, transactions start with no write permissions, so they must eventually declare 

write intentions for all pages that they wish to update; at the end of the 

transaction, all write permission are automatically revoked by the server. In the 

second case, a write permission can be retained at a client site until the client 

chooses to drop the permission or until the server asks a client to drop its write 

permission.  

 

• Remote Conflict Priority. The third level of differentiation for avoidance-based 

algorithms is the priority given to consistency actions when they are released at 

remote clients. There are two options here: wait and preempt. A wait policy states 

that consistency actions that conflict with the operation of an ongoing transaction 

at a client must wait for that transaction to complete. In contrast, under a preempt 

policy, ongoing transactions can be aborted as the result of an incoming 

consistency action.  

 

• Remote Update Action. The final level on the avoidance-based side of the 

taxonomy is based on how remote updates are implemented. The options here are 

the same as in the detection-based case, namely: invalidation, propagation, and 

choosing dynamically between the two. An important difference between remote 

update actions under the avoidance-based algorithms and under the detection-

based ones is that in the avoidance-based case, the remote operations are initiated 

and must be completed on behalf of a transaction before the transaction is allowed 

to commit. This is necessary to maintain the ROWA semantic guarantees that 

provide the basis for the correctness of avoidance-based algorithms. Therefore, if 

update propagation is used, all remote sites that receive the propagated update 

must participate in a two-phase commit with the server and the client at which the 

transaction is executing. In contrast, invalidation does not require two-phase 
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commit, because in this case, data is simply removed from the remote client 

caches.  

There are many different ways to categorize various cache consistency algorithms for 

transactional client/server environment. The taxonomy presented in [1] is just one of 

them.  

 

5. Conclusion and future work 

Caching is currently the primary mechanism for reducing the latency as well as 

bandwidth requirements for delivering Web contents. This survey has compared weak 

cache consistency and strong cache consistency algorithms that are used in the Web 

environment, from conceptual point of view as well as the experiment results from 

various research papers ([2], [3], [4]). It also discussed a taxonomy that categorizes 

different cache consistency algorithms that are applied under transactional client/server 

environments. Although in the Web environment, there is no need to consider 

transactional commitment, we could still perform the consistency check asynchronously 

in order to leverage the server load, which is one of the possible ways to apply 

transactional cache consistency algorithms to Web environment. We could also apply 

“change notification hints” method to cached documents based on their popularity. I 

guess this is how the idea of adaptive TTL came from.  

WWW is simply another huge client/server environment. Each computer an end user 

uses is just a small node within the Web. In order to access contents on a certain Web 

server, the user request might first go through a proxy server, or even a wide area 

network that connects this small node to the Web. Although the situation of WWW might 

be more complicated, one good news is that it is not transactional, i.e., the Web server 

doesn’t need to worry about whether a client transaction is about to commit, or grant 

write permission to the client.  

A choice has to be made whether to use weak or strong cache consistency, i.e., for the 

cache, whether to ensure the document freshness all the time, or just validate the objects 

after certain time interval. In my opinion, we could combine these approaches to 

maximize their advantages. I plan to study further into web caching algorithms, possibly 
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from those caching algorithms for a distributed client/server environment, and apply them 

to fit in the Web environment. If an algorithm could perform well in a general distributed 

environment, it could probably be a good candidate for the Web as well. There are also 

possible directions such as the two-level- lease cache consistency algorithm introduced in 

[3], and pre-fetching techniques that could possibly be implemented on the cache server 

side. This should be an interesting subject for research.  
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