
Consistency Control Algorithms
for Web Caching

Leon Cao
University of Waterloo

February 28, 2001

What is a CACHE ?

Generally, A Web cache checks if the requested information is
available in its local storage, if so, a reply is sent back to the user
with the requested data; otherwise the cache forwards the request
on behalf of the user to either another cache or to the original
server.

Web
Server

Document 1

…...
Document n

…...

Cache

Document 1 URL request

Cache

Document 1

Document 2

There are two basic types of Web cache:
browser cache and proxy cache.

World-Wide Web

Web Server

Web Server
Web Server

Browser

User

Proxy

cache

Browser Browser Browser

User User User

…. ….

…... …...

LAN
cache

Advantages of Web Caching

• Reduced network bandwidth consumption

• Reduced server load

• Reduced client latency

• Sometimes more reliability

Disadvantages of Web Caching

• Potential of stale data access

• Increases latency on requests for non-cached pages

• Increases local administrative complexity and cost for disk space

• Online advertising is unable to know how many times

a certain page has been viewed

• By introducing caching mechanism, multiple copies of a same object are created and
stored in various caches all over the Internet. How to keep them consistent? How to
ensure the data user accesses is always valid?

• The value of cache is greatly reduced if cached copies are not updated when the
original data change.

• Cache consistency algorithms ensure that cached copies of data are eventually
updated to keep consistency with the original data.

• An ideal cache consistency solution will enforce the consistency to the maximum
extent, while reducing the network bandwidth consumption and server load.

• There are basically two categories of cache consistency approaches:
weak cache consistency and strong cache consistency.

Why cache consistency algorithms?

Weak Cache Consistency

• Under weak cache consistency algorithm, it is possible for the user to get a stale

document from the cache, because the cache only validates the document’s

freshness with the server periodically so as to reduce network bandwidth and

server workload.

• TTL (Time-To-Live) and Client Polling are two algorithms that fall in to this

category

Weak Cache consistency

HTTP/1.1 200 OK
Date: Fri, 09 Feb 2001 10:19:29 GMT
Server: Apache/1.3.3 (Unix)
Cache-Control: max-age=3600, must-revalidate
Expires: Fri, 09 Feb 2001 11:19:29 GMT
Etag: “3e86-410-3596fbbc”
Content-Length: 1040
Content-Type: text/html
…

• The challenge in supporting this approach lies in selecting an appropriate TTL value.

TTL (Time-To-Live)

• Under TTL approach, each object is assigned a time-to-live value, which is an estimate of
the object’s lifetime, after which its supposed to change.

• When the TTL expires, the data is considered invalid, and the next request for the object
will cause the object to be requested from the original server.

• TTL -based strategies are easy to implement, by using the “expires” header field in HTTP
format. Following is an example of an HTTP header that applies the “expires” field:

Weak Cache consistency

Client Polling

• Under this approach, the client (cache) periodically checks back

with the server to determine if cached objects are still valid.

• A typical algorithm is called Update Threshold. The update

threshold is expressed as a percentage of the object’s age.

• For example, consider a cached file whose age is 30 days and the

update threshold is set to 10%.

URL
Request

Object
in cache?

Object EXPIRY
time Reached?

Make an
IF-Modified-Since
Request to server

Refresh interval
time Reached?

Send object
from cache

Was object
modified?

Retrieve object
from remote server

YesYes

Yes No

No

No

Yes No

CERN Proxy Cache logic

Weak Cache consistency

Summary

• We could see from the introduction of weak cache consistency that weak consistency

control algorithms save network traffic and user latency at the expense of returning

stale documents to the server.

• Weak cache consistency is an economic approach user situations where document

modification doesn’t happen very frequently, or user doesn’t have strict requirement

on the freshness of the document.

• However, if the validity of the data is important (e.g. weather forecast), weak cache

consistency is not applicable. A strong consistency algorithm has to be applied.

Strong Cache consistency

Invalidation

• The Web server is responsible for keeping track of the copy of data.
• Once the data is modified on the server, the server sends out invalidation

message to all those caches that keep the copy.
• Invalidation guarantees document freshness.

Polling-Every-Time

• Once the cache receives request from end-user, it polls the server to confirm
if the data it caches is still fresh, therefore also guarantees freshness.

• Potentially there will be a lot of message transfers.
• Given a short document lifetime and frequent requests from the user, this is

feasible.

Trace Trace
Modification Modification
Approach TTL Polling Invalidation Approach TTL Polling Invalidation
Hits 16456 16565 16268 Hits 4907 4907 4905
Get Requests 35015 34906 35203 Get Requests 20523 20523 20525
If-Modified-Since 922 16565 0 If-Modified-Since 239 4907 0
Reply 200 35388 35689 35203 Reply 200 20535 20549 20525
Reply 304 549 15782 0 Reply 304 227 4881 0
Invalidations 0 0 6028 Invalidations 0 0 248
Total Messages 71874 102942 76434 Total Messages 41524 50860 41298
File Xfer bytes 185MB 187MB 183MB File Xfer bytes 263MB 263MB 263MB
Ctrl Msg bytes 3.91MB 7.09MB 4.29MB Ctrl Msg bytes 2.39MB 3.38MB 2.36MB
Messages bytes 189MB 194MB 187MB Messages bytes 265MB 266MB 265MB
Stale Hits < 410 0 0 Stale Hits < 14 0 0
Avg. Latency 0.124 0.138 0.134 Avg. Latency 0.16 0.173 0.165
Min Latency 0.010 0.039 0.010 Min Latency 0.010 0.038 0.010
Max Latency 32.1 12.2 107 Max Latency 12.2 12.2 12.2
Server CPU 26.0% 30.2% 27.6% Server CPU 34.1% 35.6% 32.7%
DISK RW/s .37;2.2 .41;2.3 .41;2.5 DISK RW/s .94;2.3 1.4;2.0 1.0;2.2

SASK, 51471 requests
1148 files modified

SDSC, 25430 requests
57 files modified

Results from “Maintaining Strong Cache Consistency in World-Wide Web” by P. Cao & C. Liu

Experimental Results

Limitations

• Due to space limitation, some of the experiments in the research papers are performed in

a local area network instead of the Internet.

• The problem with update threshold is how to decide the individual update threshold value

for each document.

• Invalidation approaches are often expensive.

• Another problem with invalidation is how to deal with failures.

Consistency control algorithms for Web caching

Improvements

Consistency control algorithms for Web caching

• Add some invalidation function to the server while implementing adaptive TTL.

• Two-tier-lease-augmented invalidation algorithm ([3]):

• A “lease” field is added to all the documents sent from the server to a client cache

• Server promises to notify the client if the document changes before the lease expires

• Client promises to send an “if-modified-since” message to the server once the lease

expires and the client still wants to keep the document

• For regular “get-object” request, the server assigns a very short lease value (e.g. 0)

and a regular lease to “if-modified-since” requests

• Pre-fetching could also be used to reduce the stale rate.

cache consistency in transactional
Client/Server environment

Now let’s take a look at...

Reference architecture for a data-shipping client/server DBMS

Lock & Copy
Table

Server
DBMS

Buffer pool

Log Disk

Database
Disks

Client
Disk

Client
DBMS

lock
Manager

Appli-
cation

Appli-
cation

data
cache

Client
Disk

Client
DBMS

lock
Manager

Appli-
cation

Appli-
cation

data
cache

...

...

Workstation 1 Workstation n

Lock & Copy
Table

Server
DBMS

Buffer pool

Log Disk

Database
DisksServer 1 Server m

• Most cache consistency algorithms in client/server architecture could be categorized

into detection-based or avoidance-based, depending on the choice of Invalid Access

Prevention.

• Algorithms that use avoidance for invalid access prevention ensure that at any time,

all cached data is up-to-date; those that use detection allow stale data to remain in

client caches and ensure that transactions are allowed to commit only if it can be verified

that they have not accessed such stale data.

• Transactional cache consistency algorithms must ensure that no transactions that access

stale data are allowed to commit.

• [1] presented a taxonomy that partitions consistency control algorithms into two classes

according to whether their approach to preventing stale data access is detection-based or

avoidance-based.

Detection-based Algorithms

• Detection-based algorithms allow stale data copies to reside in a client’s cache for

for some time.

• There are three levels of differentiation in the detection-based side of the taxonomy:

• Validity Check Initiation

• Synchronous

• Asynchronous

• Deferred

• Change Notification Hints

• Optimistic

• Pessimistic

• Remote Update Action

• Propagation

• Invalidation

• Dynamically choosing

Avoidance-based Algorithms

• Avoidance-based algorithms enforce cache consistency by making it impossible for

transactions to access stale data in their local cache.

• These algorithms use a read-one/write-all (ROWA) approach to replica management,

which ensures that all existing copies of an updated item have the same value when

an updating transaction commits.

• There are 4 levels in the avoidance-based half of the taxonomy:

• Write Intention Declaration

• Synchronous

• Asynchronous

• Deferred

• Write Permission Duration

• One particular transaction

• Span multiple transactions

• Remote Conflict Priority

• Wait

• Preempt

• Remote Update Action

Conclusions

• Cache is also used to keep mummies...

• A good cache consistency algorithm is essential to reduce client latency as well

as bandwidth requirement for delivering web contents.

• Taking all factors into consideration, a really good consistency control algorithm is

hard to find.

• One possible solution to this is to combine the advantage of each algorithm. For

example, add invalidation mechanism to server while implementing adaptive

TTL at client cache, or use asynchronous message transfer to reduce message

block overheads, while enforce strong cache consistency.

• A lot of work to do...

Main References

[1] Michael J. Franklin, Michael J. Carey and Miron Livny. Transactional client-

server cache consistency: Alternatives and performance. ACM Transaction on Database

Systems, 1997.

[2] James Gwertzman and Margo Seltzer. World-Wide Web Cache Consistency.

International Conference USENIX, San Diego, CA, 1996

[3] Pei Cao and Chengjie Liu. Maintaining Strong Cache Consistency in the World-

Wide Web. Proceedings of the 17th International Conference on Distributed Computing

Systems (ISDCS ’97), 1997

[4] Duane Wessels. Intelligent Caching for World-Wide Web Objects. International

Conference of the Internet Society (INET), Honolulu, HI, 1995

