Hybrid Shipping
Architectures:
A Survey

lvan Bowman
Iitbowman@acm.org
http://plg.uwaterloo.ca/~itbowman

CS748T
14 Feb 2000

Outline

 Partitioning query processing
 Partitioning client code

e Optimization of query plans
 Mobile code approaches

e Conclusions and future work

Introduction

« RDBMSs partition applications into a
relational portion and procedural portion

 Recent advances have shown how to
distribute the relational query processing

* |t may also make sense to distribute
procedural processing of client programs

e This is possible today, but it Is very hard!

Partitioning System Functionality

 Split relational and procedural processing

— Relational processing can be optimized and
executed efficiently

— Procedural code is flexible and more powerful

— This gives a clean architecture, with nice
separation of concerns

 Relational system provides transparency to
client application

Single Processor System

b

)
I

Program

One

ACCEeSS
Module

i

Storage
AcCCess

Access | _|Program
Module Two
Storage

Access

Using Multiple Computers

e An early idea: Client/Server
— Data and DBMS on one machine (Server)
— Client application on another (Client)

« Client sends queries to Server, gets results

» Client resources really only used for client
application

e Server IS a bottleneck

Query Shipping Client Server

Server

==
DBMS Queries

Shared Data
|

/ Communications Software
e Network

Communications Software
|

Client Application

Client

Distributed Client Server

e To support more clients, we can:
— Buy a bigger server
— Add more servers and partition the data

o Adding more servers is likely cheaper

* Requires data partitioning, distributed query
processing, distributed concurrency, ...

— (all of which we’ve talked about in class)

Distributed Client Server

=== =

Server Server Server Server

Servers

; ______________________________________ B —— Network

Communications Software
|

Client Application

Client

Heterogeneous Processing

e Servers may be heterogeneous

« Wrappers can provide a uniform view of
Servers

 |eads to distributed query processing with
some processing on client (at a minimum,
what the servers could not handle)

10

Mediator Architectures

Server Server
§§§;~—DBMS §§§;~—DBMS

I_I

Mediator

Mediator

Servers

; ______________________________________ B —— Network

Mediator

Client Application

Client

11

Data Shipping

* Do all query processing at client
e Cache data on clients

e Ship data in from server as needed.

— Object

— Disk pages

— Groups of objects
— Hybrid of the above

» Typically used by OODBMS

12

Data Shipping Client Server

Server
===
Server
Shared Data
|
Objects, Comm. Software
Pages,
or Fetch

Clusters L Network RequeStS

Comm. Software™ Client DBMS

% Local /
Cache App. Client

13

Hybrid Shipping

e Query shipping under-uses client resources
 Data shipping under-uses server resources
* |nstead, use Hybrid Shipping

* Query processing at client and at server
— Gives a form load balancing

— Can reduce data movement for data inflating or
reducing operators

— Client caching can be used effectively

14

Data Shipping Client Server

Server
e
DBMS
Shared Data
|
Objects, Comm. Software
Pages,
or Fetch

Clusters L Network RequeStS

Comm. Software™ Client DBMS

% Local /
Cache App. Client

15

Splitting Client Code

 Original systems partitioned apps into
relational queries and application code

— This provides a clean architecture
 Distributed systems originally split
execution sites along these dimensions

— This non-optimal splitting has been addressed
for queries

— The problem remains for application code

16

Why Move Client Code?

e To take advantage of a powerful server

e To reduce query processing costs (e.g. with
selective user functions)

e To minimize network communication costs
by executing code closer to the data

17

A Contrived Example

sql = “SELECT emp_i1d, emp_name ”
“FROM EMP™;
rs = stmt.executeQuery(sqgl);
while(rs.next()) {
1T isPrime(rs.getint(1))) {
System.out.printin(rs.getString(2));

18

User Defined Functions

sql = “SELECT emp_i1d, emp _name ”

“FROM EMP WHERE i1sPrime(emp_i1d)”’;

rs = stmt.executeQuery(sqgl);
while(rs.next()) {

System.out.printin(rs.getString(2));

}

19

Chlient Code on the Server

« DBMS vendors allow:
— User-defined functions used in queries

— Stored procedures allow arbitrarily complex
procedural code to be executed at the server

e S0, what’s the problem?

It's TOO HARD!

20

Getting Code On the Server

e Must be ‘multi-lingual’

— Server environment doesn’t match client’s
(Java In the database simplifies this somewhat)

 Partitioning decision made by the developer
— Must decide early on (design phase)
— Programmer intuition is often wrong
— Cannot easily tune to new systems
— Cannot adapt to dynamic workload

21

Partitioning Code: Past Experience

e |COPS (Brown) and CAGES (North
Carolina) automatically partitioned
graphics applications between a mainframe
host and a “satellite’ graphical terminal

22

CAGES and ICOPS

Coding for Host/Satellite systems required
bilingualism

Programmers often made incorrect partitioning
choices in the design stage

Design-time partitioning led to vendor lock-in

Configurable programs addressed these issues
— Provided a run time that could monitor costs
— Allowed either run-time or compile-time partitioning

23

Code Shipping: MOCHA

Allow relational operators and client code
to be executed either at client or any server

Code that Is not present Is shipped to the
appropriate location

All code that may be shipped implemented
as a static function and described in XML

Optimized only for network costs

24

Optimizing Distributed Plans

e Optimizer must choose:
— Access path (e.g. sequential, or an index?)
— Algorithm for physical operators
— Join order
— Expensive predicate placement
— Intra-query parallelism
— Execution site for each operator

25

Optimizing Expensive Predicates

« Rank-order approaches: selectivity and cost

e Some approaches increase join degree

— Dynamic programming can not handle high
join degree (say, higher than 15)

— Randomized, greedy, or branch-and-bound
algorithms may be more effective up to 50-100

 EXxisting approaches do not support site
selection for expensive predicates

26

Mobile Code

e User defined functions and stored
procedures are not mobile

* \WWe would like an approach that can place
code dynamically based on system statistics

* Load and run, or on-the fly mobility

27

Coign

« Coign distributes binary applications
written using COM
 Classifies components using training runs

— Components with similar access paths will be
placed near each other

« A commodity flow network iIs used
— Max-flow, min-cut graph cutting optimization

28

Component Communication™

IS

3 H = Component fnxrﬂﬁﬂ';z.';' p-f.‘ed on Server,
N

f«f@ Hunt, 1999

=

Coign’s Experience

 |It’s possible to optimize distribution of
existing systems

* Non-distributable components constrain the
optimization

« Applications designed for distribution were
optimized better

30

Abacus

e Abacus project at CMU also used ADP

— Provides primitives for data-intensive,
distributable components in C++

— Partitioned during execution based on statistics
— Moved components using checkpoint/restore

 Partitioning Is resistant to bad access plans,
since It dynamically adapts to system load

31

Languages

e We want:
— Mobility
— Safety
— Security
— Portability
— Efficiency
e Java Is promising; but, iIs it fast enough?
« Software fault isolation may be faster
« Many other languages are available

32

Conclusions

* Recent advances have shown good ways to
partition the cost of relational processing

« Similar work can be done for user code
— Automatically detect code that can benefit from
partitioning
— Optimize the partitioning of many functions

— Execute user code on server efficiently, safely,
securely, and transparently

33

Questions?

34

