
Hybrid Shipping
Architectures:

A Survey

Ivan Bowman

itbowman@acm.org

http://plg.uwaterloo.ca/~itbowman

CS748T

14 Feb 2000



2

Outline

• Partitioning query processing

• Partitioning client code

• Optimization of query plans

• Mobile code approaches

• Conclusions and future work



3

Introduction

• RDBMSs partition applications into a
relational portion and procedural portion

• Recent advances have shown how to
distribute the relational query processing

• It may also make sense to distribute
procedural processing of client programs

• This is possible today, but it is very hard!



4

Partitioning System Functionality

• Split relational and procedural processing
– Relational processing can be optimized and

executed efficiently

– Procedural code is flexible and more powerful

– This gives a clean architecture, with nice
separation of concerns

• Relational system provides transparency to
client application



5

Storage
Access

Access
Module

Program
One

Program
Two

Storage
Access

Access
Module

Single Processor System



6

Using Multiple Computers

• An early idea: Client/Server
– Data and DBMS on one machine (Server)

– Client application on another (Client)

• Client sends queries to Server, gets results

• Client resources really only used for client
application

• Server is a bottleneck



7

Query Shipping Client Server

Shared Data

Server
DBMS

Communications Software

Network

Communications Software

Client Application

Server

Client

Queries

Tuples



8

Distributed Client Server

• To support more clients, we can:
– Buy a bigger server

– Add more servers and partition the data

• Adding more servers is likely cheaper

• Requires data partitioning, distributed query
processing, distributed concurrency, …
– (all of which we’ve talked about in class)



9

Distributed Client Server

Server

Network

Communications Software

Client Application
Client

Server Server Server

Servers



10

Heterogeneous Processing

• Servers may be heterogeneous

• Wrappers can provide a uniform view of
servers

• Leads to distributed query processing with
some processing on client (at a minimum,
what the servers could not handle)



11

Mediator Architectures

Server

Network

Mediator

Client Application
Client

Servers

Mediator

DBMS

Server

Mediator

DBMS



12

Data Shipping

• Do all query processing at client
• Cache data on clients
• Ship data in from server as needed:

– Object
– Disk pages
– Groups of objects
– Hybrid of the above

• Typically used by OODBMS



13

Data Shipping Client Server

Shared Data

X
Server

Comm. Software

Network

Comm. Software

App.

Server

Client

*Delis et al.

Fetch
Requests

Objects,
Pages,

or
Clusters

Local
Cache

Client DBMS



14

Hybrid Shipping

• Query shipping under-uses client resources
• Data shipping under-uses server resources
• Instead, use Hybrid Shipping
• Query processing at client and at server

– Gives a form load balancing
– Can reduce data movement for data inflating or

reducing operators
– Client caching can be used effectively



15

Data Shipping Client Server

Shared Data

Server
DBMS

Comm. Software

Network

Comm. Software

App.

Server

Client

*Delis et al.

Fetch
Requests

Objects,
Pages,

or
Clusters

Local
Cache

Client DBMS



16

Splitting Client Code

• Original systems partitioned apps into
relational queries and application code
– This provides a clean architecture

• Distributed systems originally split
execution sites along these dimensions
– This non-optimal splitting has been addressed

for queries

– The problem remains for application code



17

Why Move Client Code?

• To take advantage of a powerful server

• To reduce query processing costs (e.g. with
selective user functions)

• To minimize network communication costs
by executing code closer to the data



18

A Contrived Example

sql = “SELECT emp_id, emp_name ”

 “FROM EMP”;

rs = stmt.executeQuery( sql );

while( rs.next() ) {

if( isPrime( rs.getInt(1) ) ) {

System.out.println(rs.getString(2));

}

}



19

User Defined Functions

sql = “SELECT emp_id, emp_name ”

 “FROM EMP WHERE isPrime(emp_id)”;

rs = stmt.executeQuery( sql );

while( rs.next() ) {

System.out.println(rs.getString(2));

}



20

Client Code on the Server

• DBMS vendors allow:
– User-defined functions used in queries

– Stored procedures allow arbitrarily complex
procedural code to be executed at the server

• So, what’s the problem?



21

Getting Code On the Server

• Must be ‘multi-lingual’
– Server environment doesn’t match client’s

(Java in the database simplifies this somewhat)

• Partitioning decision made by the developer
– Must decide early on (design phase)
– Programmer intuition is often wrong
– Cannot easily tune to new systems
– Cannot adapt to dynamic workload



22

Partitioning Code: Past Experience

• ICOPS (Brown) and CAGES (North
Carolina)  automatically partitioned
graphics applications between a mainframe
host and a ‘satellite’ graphical terminal



23

CAGES and ICOPS

• Coding for Host/Satellite systems required
bilingualism

• Programmers often made incorrect partitioning
choices in the design stage

• Design-time partitioning led to vendor lock-in

• Configurable programs addressed these issues
– Provided a run time that could monitor costs

– Allowed either run-time or compile-time partitioning



24

Code Shipping: MOCHA

• Allow relational operators and client code
to be executed either at client or any server

• Code that is not present is shipped to the
appropriate location

• All code that may be shipped implemented
as a static function and described in XML

• Optimized only for network costs



25

Optimizing Distributed Plans

• Optimizer must choose:
– Access path (e.g. sequential, or an index?)

– Algorithm for physical operators

– Join order

– Expensive predicate placement

– Intra-query parallelism

– Execution site for each operator



26

Optimizing Expensive Predicates

• Rank-order approaches: selectivity and cost

• Some approaches increase join degree
– Dynamic programming can not handle high

join degree (say, higher than 15)

– Randomized, greedy, or branch-and-bound
algorithms may be more effective up to 50-100

• Existing approaches do not support site
selection for expensive predicates



27

Mobile Code

• User defined functions and stored
procedures are not mobile

• We would like an approach that can place
code dynamically based on system statistics

• Load and run, or on-the fly mobility



28

Coign

• Coign distributes binary applications
written using COM

• Classifies components using training runs
– Components with similar access paths will be

placed near each other

• A commodity flow network is used
– Max-flow, min-cut graph cutting optimization



29

Component Communication*

© Hunt, 1999



30

Coign’s Experience

• It’s possible to optimize distribution of
existing systems

• Non-distributable components constrain the
optimization

• Applications designed for distribution were
optimized better



31

Abacus

• Abacus project at CMU also used ADP
– Provides primitives for data-intensive,

distributable components in C++

– Partitioned during execution based on statistics

– Moved components using checkpoint/restore

• Partitioning is resistant to bad access plans,
since it dynamically adapts to system load



32

Languages

• We want:
– Mobility
– Safety
– Security
– Portability
– Efficiency

• Java is promising; but, is it fast enough?
• Software fault isolation may be faster
• Many other languages are available



33

Conclusions

• Recent advances have shown good ways to
partition the cost of relational processing

• Similar work can be done for user code
– Automatically detect code that can benefit from

partitioning

– Optimize the partitioning of many functions

– Execute user code on server efficiently, safely,
securely, and transparently



34

Questions?


