
Notes on Database System Reliability∗

M. Tamer Özsu

We have so far assumed that no system failures occur. Within this context,
concurrency control algorithms enforce the isolation property as well as database
consistency. The no-failure assumption is, of course, unrealistic; there will be
various failures in any computer system. Therefore appropriate protocols have
to be implemented such that DBMS reliability can be guaranteed.

DBMS reliability protocols address transaction atomicity and durability. As
we discussed, atomicity refers to the “all-or-nothing” property of transactions.
Consequently, we need to guarantee that, in the face of failures, either the effects
of all of the actions of a transaction are reflected in the database, or none of
the effects are. For example, if we are running a transaction that increases
the salaries of employees by 10%, and a failure occurs during its execution, the
DBMS has to take special care to ensure that the database reflects the increase
to the salaries of either all the employees or to none. Durability, on the other
hand, requires that the effects of committed transactions on the database survive
failures. This also requires special care, since failures may wipe out some of these
updates.

1 Architectural Considerations

The responsibility for maintaining atomicity and durability of transactions falls
on the DBMS Recovery Manager (RM). Applications interface with RM inter-
face using the (abstract) commands: begin transaction, read, write, commit,
and abort1; RM also has an interface to the operating system via the recover
command.

For ease of exposition, we will assume the system architecture given in Figure
1. This is similar to that given in [HR83] and [BHG87].

In this discussion we assume that the database is stored permanently on
secondary storage, which in this context is called the stable storage [LS76]. The
stability of this storage medium is due to its robustness to failures. A stable
storage device would experience considerably less-frequent failures than would
a nonstable storage device. In today’s technology, stable storage is typically
implemented by means of duplexed magnetic disks which store duplicate copies

∗Much of this material comes from Chapter 12 of Principles of Distributed Database Sys-
tems, 2nd edition, M.T. Özsu and P. Valduriez, Prentice-Hall, 1999.

1Note that these are abstract operations that do not appear in this form within SQL.
However, they have SQL correspondences.

1



Secondary
storage

Stable
database

Read Write

Write Read

Main memory

Database
buffers

Local Recovery
Manager

Database Buffer
Manager

Fetch,
Flush

(Volatile
database)

Figure 1: Recovery Architecture

of data that are always kept mutually consistent. We call the version of the
database that is kept on stable storage the stable database. The unit of storage
and access of the stable database is typically a page.

The database buffer manager (BM) keeps some of the recently accessed data
in main memory buffers. This is done to enhance access performance. Typically,
the buffer is divided into pages that are of the same size as the stable database
pages. The part of the database that is in the database buffer is called the
volatile database. Transactions update data that is on the volatile database,
which, at a later time, is written back to the stable database.

When the RM wants to read a page of data2 on behalf of a transaction—
strictly speaking, on behalf of some operation of a transaction—it issues a fetch
command, indicating the page that it wants to read. The buffer manager checks
to see if that page is already in the buffer (due to a previous fetch command
from another transaction) and if so, makes it available for that transaction; if
not, it reads the page from the stable database into an empty database buffer. If
no empty buffers exist, it selects one of the buffer pages to write back to stable
storage and reads the requested stable database page into that buffer. There
are a number of different algorithms by which the buffer manager may choose
the buffer page to be replaced (such as the Least Recently Used -LRU) that you
may have seen in operating system textbooks.

The BM also provides the interface by which the RM can actually force it
to write back some of the buffer pages. This can be accomplished by means of
the flush command, which specifies the buffer pages that the RM wants to be
written back. We should indicate that different RM implementations may or
may not use this forced writing. This issue is discussed further in subsequent
sections.

As its interface suggests, the buffer manager acts as a conduit for all access
2The RM’s unit of access may be in blocks which have sizes different from a page. However,

for simplicity, we assume that the unit of access is the same.

2



to the database via the buffers that it manages. It provides this function by
fulfilling three tasks:

1. Searching the buffer pool for a given page;

2. If it is not found in the buffer, allocating a free buffer page and loading the
buffer page with a data page that is brought in from secondary storage;

3. If no free buffer pages are available, choosing a buffer page for replacement .

Searching is quite straightforward. Typically, the buffer pages are shared
among the transactions that execute against the database, so search is global.

Allocation of buffer pages is typically done dynamically. This means that
the allocation of buffer pages to processes is performed as processes execute.
The buffer manager tries to calculate the number of buffer pages needed to run
the process efficiently and attempts to allocate that number of pages. The best
known dynamic allocation method is the working-set algorithm [Den68, Den80].

A second aspect of allocation is fetching data pages. The most common
technique is demand paging , where data pages are brought into the buffer as
they are referenced. However, a number of operating systems prefetch a group
of data pages that are in close physical proximity to the data page referenced.
Buffer managers choose this route if they detect sequential access to a file.

In replacing buffer pages, the best known technique is the least recently used
(LRU) algorithm that attempts to determine the logical reference strings [EH84]
of processes to buffer pages and to replace the page that has not been referenced
for an extended period. The anticipation here is that if a buffer page has not
been referenced for a long time, it probably will not be referenced in the near
future.

Clearly, these functions are similar to those performed by operating system
(OS) buffer managers. However, quite frequently, DBMSs bypass OS buffer
managers and manage disks and main memory buffers themselves due to a
number of problems (see, e.g., [Sto81]) that are outside the scope of this course.

2 Failure Types in DBMSs

A RM has to deal with three types of failures: transaction failures (aborts),
system failures, and media (disk) failures.

2.1 Transaction Failures

Transactions can fail for a number of reasons. Failure can be due to an error
in the transaction caused by incorrect input data as well as the detection of
a present or potential deadlock. Furthermore, some concurrency control algo-
rithms do not permit a transaction to proceed or even to wait if the data that
they attempt to access are currently being accessed by another transaction.
This might also be considered a failure. The usual approach to take in cases of

3



transaction failure is to abort the transaction, thus resetting the database to its
state prior to the start of this transaction.

The frequency of transaction failures is not easy to measure. It is indicated
that in System R, 3% of the transactions abort abnormally [GMB+81]. In gen-
eral, it can be stated that (1) within a single application, the ratio of transactions
that abort themselves is rather constant, being a function of the incorrect data,
the available semantic data control features, and so on; and (2) the number
of transaction aborts by the DBMS due to concurrency control considerations
(mainly deadlocks) is dependent on the level of concurrency (i.e., number of
concurrent transactions), the interference of the concurrent applications, the
granularity of locks, and so on.

2.2 System) Failures

The reasons for system failure can be traced back to a hardware failure (pro-
cessor, main memory, power supply, etc.) or to a software failure (bug in the
operating system or in the DBMS code). The important point from the per-
spective of this discussion is that a system failure is always assumed to result
in the loss of main memory contents. Therefore, any part of the database that
was in main memory buffers is lost as a result of a system failure. However, the
database that is stored in secondary storage is assumed to be safe and correct.

2.3 Media Failures

Media failure refers to the failures of the secondary storage devices that store
the database. Such failures may be due to operating system errors, as well as to
hardware faults such as head crashes or controller failures. The important point
from the perspective of DBMS reliability is that all or part of the database that
is on the secondary storage is considered to be destroyed and inaccessible.

Duplexing of disk storage and maintaining archival copies of the database
are common techniques that deal with this sort of catastrophic problem.

3 Update Approaches

There are two possible update approaches in DBMSs: in-place updating and
out-of-place updating. In-place updating physically changes the value of the
data item in the stable database. As a result, the previous values are lost.
Out-of-place updating on the other hand, does not change the value of the
data item in the stable database, but maintains the new value separately. Of
course, periodically, these updated values have to be integrated into the stable
database. Reliability issues are somewhat simpler if in-place updating is not
used. However, most DBMSs use it due to its better performance.

4



3.1 In-Place Update

Since in-place updates cause previous values of the affected data items to be lost,
it is necessary to keep enough information about the database state changes to
facilitate the recovery of the database to a consistent state following a failure.
This information is typically maintained in a database log. Thus each update
transaction not only changes the database but is also recorded in the database
log (Figure 2).

New
stable database

state

Database Log

Update
Operation

Old
stable database

state

Figure 2: Update Operation Execution

We will discuss the log contents and log management shortly. Our primary
focus will be on the recovery issues that arise due to in-place updates. We
summarize out-of-place update issues in the next section; more details can be
found in [Ver 78].

3.2 Out-of-Place Update

Typical techniques for out-of-place updating are shadowing ([ABC+79, Gra79])
and differential files [SL76]. Shadowing uses duplicate stable storage pages in
executing updates. Thus every time an update is made, the old stable storage
page, called the shadow page, is left intact and a new page with the updated
data item values is written into the stable database. The access path data
structures are updated to indicate that the shadow page contains the current
data so that subsequent accesses are to this page. The old stable storage page
is retained for recovery purposes (to perform undo).

Recovery based on shadow paging was implemented in the early prototype
versions of System R’s recovery manager [GMB+81]. This implementation uses
shadowing together with logging.

The differential files approach maintains each stable database file as a read-
only file. In addition, it maintains a corresponding read-write differential file
which stores the changes to that file. Given a logical database file F , let us
denote its read-only part as FR and its corresponding differential file as DF .
DF consists of two parts: an insertions part, which stores the insertions to F ,

5



denoted DF+, and a corresponding deletions part, denoted DF−. All updates
are treated as the deletion of the old value and the insertion of a new one. Thus
each logical file F is considered to be a view defined as F = (FR∪DF+)−DF−.
Periodically, the differential file needs to be merged with the read-only base file.

Recovery schemes based on this method simply use private differential files
for each transaction, which are then merged with the differential files of each
file at commit time. Thus recovery from failures can simply be achieved by
discarding the private differential files of noncommitted transactions.

There are studies that indicate that the shadowing and differential files
approaches may be advantageous in certain environments. One study by [AD85]
investigates the performance of recovery mechanisms based on logging, differ-
ential files, and shadow paging, integrated with locking and optimistic (using
timestamps) concurrency control algorithms. The results indicate that shadow-
ing, together with locking, can be a feasible alternative to the more common
log-based recovery integrated with locking if there are only large (in terms of
the base-set size) transactions with sequential access patterns. Similarly, dif-
ferential files integrated with locking can be a feasible alternative if there are
medium-sized and large transactions.

4 Logging

As indicated above, when in-place update scheme is used, each database update
is recorded in a log. To motivate the need for a log, consider the following
scenario. The DBMS began executing at time 0 and at time t a system failure
occurs. During the period [0, t], two transactions (say, T1 and T2) pass through
the DBMS, one of which (T1) has completed (i.e., committed), while the other
one has not (see Figure 3). The durability property of transactions would require
that the effects of T1 be reflected in the stable database. Similarly, the atomicity
property would require that the stable database not contain any of the effects
of T2. However, special precautions need to be taken to ensure this.

0 t Time

System crash

T1

T2

Begin End

Begin

Figure 3: Occurrence of a System Failure

Let us assume that the RM and BM algorithms are such that the buffer

6



pages are written back to the stable database only when the buffer manager
needs new buffer space. In other words, the flush command is not used by
the RM and the decision to write back the pages into the stable database is
taken at the discretion of the buffer manager. In this case it is possible that
the volatile database pages that have been updated by T1 may not have been
written back to the stable database at the time of the failure. Therefore, upon
recovery, it is important to be able to redo the operations of T1. This requires
some information to be kept about the effects of T1 – such information is kept in
the database log. Given this information, it is possible to recover the database
from its “old” state to the “new” state that reflects the effects of T1 (Figure 4).

Database Log

REDO
Old

stable database
state

New
stable database

state

Figure 4: REDO Action

Similarly, it is possible that the buffer manager may have had to write into
the stable database some of the volatile database pages that have been updated
by T2. Upon recovery from failures it is necessary to undo the operations of
T2.3 Thus the recovery information should include sufficient data to permit the
undo by taking the “new” database state that reflects partial effects of T2 and
recovers the “old” state that existed at the start of T2 (Figure 5).

New
stable database

state

Database Log

UNDO
Old

stable database
state

Figure 5: UNDO Action
3One might think that it could be possible to continue with the operation of T2 following

restart instead of undoing its operations. However, in general it may not be possible for the
RM to determine the point at which the transaction needs to be restarted. Furthermore, the
failure may not be a system failure but a transaction failure (i.e., T2 may actually abort itself)
after some of its actions have been reflected in the stable database. Therefore, the possibility
of undoing is necessary.

7



It is important to note that the undo and redo actions are assumed to be
idempotent. In other words, their repeated application to a transaction would
be equivalent to performing them once.

The contents of the log may differ according to the implementation. How-
ever, the following minimal information for each transaction is contained in
almost all database logs: a begin (transaction) record, update records each
of which indicates the data item that is updated, its value before the update
(called the before image), and its updated value (called the after image), and
a termination record indicating the transaction termination condition (commit,
abort). The granularity of the before and after images may be different, as it is
possible to log entire pages or some smaller unit. This is called operational log-
ging , since update operations and their effects are individually recorded. This
method is used in many systems, including ARIES, but is not the only form of
logging that is possible.

Similar to the volatile database, the log is also maintained in main memory
buffers (called log buffers) and written back to stable storage (called stable log)
similar to the database buffer pages (Figure 6). The log pages can be written
to stable storage in one of two ways. They can be written synchronously (more
commonly known as forcing a log) where the addition of each log record requires
that the log be moved from main memory to stable storage. It can also be writ-
ten asynchronously , where the log is moved to stable storage either at periodic
intervals or when the buffer fills up. When the log is written synchronously, the
execution of the transaction is suspended until the write is complete. This adds
significant delay to the response-time performance of the transaction. On the
other hand, if a failure occurs immediately after a forced write, it is relatively
easy to recover to a consistent database state.

Secondary
storage

Stable
database

Read

WriteWrite

Read

Main memory

Database
buffers

Local Recovery
Manager

Database Buffer
Manager

Fetch,
Flush

(Volatile
database)

Stable
log

Log
buffers

ReadW
rite

Rea
d

W
rit

e

Figure 6: Logging Interface

Whether the log is written synchronously or asynchronously, one very im-
portant protocol has to be observed in maintaining logs. Consider a case where
the updates to the database are written into the stable storage before the log

8



is modified in stable storage to reflect the update. If a failure occurs before
the log is written, the database will remain in updated form, but the log will
not indicate the update that makes it impossible to recover the database to a
consistent and up-to-date state. Therefore, the stable log is always updated
prior to the updating of the stable database. This is known as the write-ahead
logging (WAL) protocol [Gra79] and can be precisely specified as follows:

1. Before a stable database is updated (perhaps due to actions of a yet un-
committed transaction), the before images should be stored in the stable
log. This facilitates undo.

2. When a transaction commits, the after images have to be stored in the
stable log prior to the updating of the stable database. This facilitates
redo.

5 Recovery Methods

Recovery methods can be classified according to the way they address the re-
lationship between the RM and the BM. There are two fundamental questions
that identify the possible alternatives:

1. Can the BM write the buffer pages updated by a transaction into stable
storage during the execution of that transaction, or does it have to wait
for the RM to instruct it to write them back?

BM may need to write pages dirtied by transaction T1 to stable storage
before the completion of T1, because it may run out of buffer frames and
another transaction T2 may need to bring data pages into the database
buffer. If BM can proceed with writing the dirty pages to stable database,
it is said to implement a steal policy (since T2 would be stealing buffer
frames from T1).

It is possible, however, for the RM to pin (or fix these pages in the buffer.
In that case, BM cannot flush them to stable database whenever it wants
(or needs) to. This is called a no-steal policy.

2. Can the RM force the BM to flush the buffer pages updated by a transaction
into the stable storage at the end of that transaction (i.e., the commit
point), or does the BM flush them out whenever it needs to according to
its buffer management algorithm?

If the RM can force the BM into flushing pages, this is called the force
policy; otherwise the system implements a no-force policy.

Accordingly, four alternatives can be identified: (1) steal/no-force, (2) steal/force,
(3) no-steal/no-force, and (4) no-steal/force. We will consider each of these in
more detail. What changes in these alternative policies is how the system deals
with transaction commits and aborts, and how it does recovery. In other words,
these policies determine how the DBMS implements the (abstract) commit,
abort, and recover commands.

9



5.1 Steal/No-force

This type of RM policy is called a redo/undo algorithm in [BHG87] since it
requires, as we will see, performing both the redo and undo operations upon
recovery.

Abort Processing. As we indicated before, abort is an indication of trans-
action failure. Since the buffer manager may have written the updated pages
into the stable database, abort will have to undo the actions of the transaction.
Therefore, the RM reads the log records for that specific transaction and re-
places the values of the updated data items in the volatile database with their
before images. The scheduler is then informed about the successful completion
of the abort action. This process is called the transaction undo or partial undo.

An alternative implementation is the use of an abort list , which stores the
identifiers of all the transactions that have been aborted. If such a list is used,
the abort action is considered to be complete as soon as the transaction’s iden-
tifier is included in the abort list. We won’t consider this alternative in the
remainder.

Note that even though the values of the updated data items in the stable
database are not restored to their before images, the transaction is considered to
be aborted at this point. The buffer manager will write the “corrected” volatile
database pages into the stable database at a future time, thereby restoring it to
its state prior to that transaction.

Commit Processing. The commit command causes an commit record to
be written into the log by the RM. Under this scenario, no other action is taken
in executing a commit command other than informing the scheduler about the
successful completion of the commit action.

An alternative to explicitly writing a commit record into the log is to add
the transaction’s identifier to a commit list , which is a list of the identifiers of
transactions that have committed. In this case the commit action is accepted
as complete as soon as the transaction identifier is stored in this list. Again, we
will not consider this alternative.

Recovery Processing. The RM starts the recovery action by analyzing the
log to determine which transactions need to be redone and which ones need to
be undone. Any transaction that has both a begin record and a commit record
needs to be redone. This is called partial redo. Similarly, any transaction that
has a begin record but no corresponding commit record needs to be undone.
This action is called global undo, as opposed to the transaction undo discussed
above. The difference is that the effects of all incomplete transactions need to
be rolled back, not one.

5.2 Steal/Force

These are also called undo/no-redo in [BHG87].

10



Abort Processing. The execution of abort is identical to the previous case.
Upon transaction failure, the RM initiates a partial undo for that particular
transaction.

Commit Processing. The RM issues forces the BM to flush all the updated
volatile database pages into the stable database. The commit command is then
executed by placing a commit record in the log. At this point commit processing
is considered to be completed.

Recovery Processing. Since all the updated pages are written into the sta-
ble database at the commit point, there is no need to perform redo; all the
effects of successful transactions will have been reflected in the stable database.
Therefore, the recovery action initiated by the RM consists of a global undo.

5.3 No-steal/No-force

In this case the RM controls the writing of the volatile database pages into stable
storage. The key here is not to permit the BM to write any updated volatile
database page into the stable database until at least the transaction commit
point. This is accomplished by “fix”ing the specified page in the database
buffer, thus preventing it from being written back to the stable database by the
BM. Thus any page fetch request to the buffer manager for a write operation
specifies that the page needs to be fixed4. Note that this precludes the need
for a global undo operation and is therefore called a redo/no-undo algorithm in
[BHG87].

Abort Processing. Since the volatile database pages have not been written
to the stable database, no special action is necessary. However, the RM needs
to release the pages that have been fixed by the transaction by sending an unfix
request to the BM. It is then sufficient to carry out the abort action either by
writing an abort record in the log or by including the transaction in the abort
list, informing the scheduler and then forgetting about the transaction.

Commit Processing. The RM requests the BM to unfix the volatile database
pages that were previously fixed by that transaction. These pages may now be
written back to the stable database at the discretion of the BM. Then a commit
record is placed in the log to complete commit processing.

Recover. As we mentioned above, since the volatile database pages that
have been updated by ongoing transactions are not yet written into the sta-
ble database, there is no necessity for global undo. The RM, therefore, initiates
a partial redo action to recover those transactions that may have already com-
mitted, but whose volatile database pages may not have yet written into the
stable database.

4Of course, any lock escalation messages also cause the page to be fixed.

11



5.4 No-steal/Force

This is the case where the RM forces the BM to write the updated volatile
database pages into the stable database at precisely the commit point—not
before and not after. This strategy is called no-undo/no-redo in [BHG87].

Abort Processing. Abort processing in this case is identical to that of the
no-steal/no-force case.

Commit Processing. The RM asks the BM to an unfix and flush the volatile
database pages that were previously fixed by that transaction. This forces the
BM to write back all the volatile database pages into the stable database. It
then writes a commit record into the log. The important point to note here
is that all three of these operations have to be executed as an atomic action.
One step that can be taken to achieve this atomicity is to issue only a flush
command, which serves to unfix the pages as well. Methods for ensuring this
atomicity are beyond the scope of our discussion (see [BHG87]).

Recovery Processing. The DBMS does not need to do anything to recover
in this case. This is true since the stable database reflects the effects of all the
successful transactions and none of the effects of the uncommitted transactions.

5.5 Which one is better?

Each of these recovery approaches have their advantages and disadvantages. The
choice depends on what one attempts to optimize. If the critical optimization
criterion is to reduce the recovery work, then, of course, no-steal/force is the best
strategy. As indicated above, it ensures that no dirty pages are written to stable
database before transaction commits, and that all of the dirty pages are flushed
to database at commit point (of course usingthe WAL protocol). Thus, recovery
does not need to do anything. However, it suffers from two basic problems. First
is that it has a high run-time overhead for each transaction, because of the I/O
that results from forcing dirty pages at the end of transactions. This eliminates
any possibility of doing I/O optimization. Second, since it does not allow the BM
to steal buffer frames, the buffer space becomes a critical resource. Transactions
are limited by the amount of available buffer space. This limits the number of
concurrently running transactions and, thus, the system throughput.

On the other extreme, steal/no-force has a high recovery overhead since it
lets the BM to flush out dirty pages before transaction commits, thus requiring
undo when transaction aborts or when system crashes. It also allows the BM
to hold dirty pages of committed transactions in volatile storage, thus requiring
redo when recovering from crashes. However, its run-time overhead is minimal.
It also minimizes the dependence between the RM and the BM.

The other alternatives have a combination of the advantages and disadvan-
tages of these two approaches. Most commercial systems implement a steal/no-
force crash recovery algorithm, because of its preferable performance charac-

12



teristics. These systems are optimized for “normal” processing to reduce the
transaction execution overhead when failures do not occur (more common case).
Even when failures occur, the entire recovery process is already so long that it
does not matter that database recovery adds a bit more overhead. We will
consider detailed implementation issues of steal/no-force algorithms in Section
8.

6 Checkpointing

In most of the RM implementation strategies, the execution of the recovery
action requires searching the entire log. This is a significant overhead because
the RM is trying to find all the transactions that need to be undone and redone.
The overhead can be reduced if it is possible to build a wall which signifies that
the database at that point is up-to-date and consistent. In that case, the redo
has to start from that point on and the undo only has to go back to that point.
This process of building the wall is called checkpointing .

Checkpointing is achieved in three steps [Gra79]:

1. Write a begin checkpoint record into the log.

2. Collect the checkpoint data into the stable storage.

3. Write an end checkpoint record into the log.

The first and the third steps enforce the atomicity of the checkpointing
operation. If a system failure occurs during checkpointing, the recovery process
will not find an end checkpoint record and will consider checkpointing not
completed.

There are a number of different alternatives for the data that is collected
in Step 2, how it is collected, and where it is stored. We will consider one
example here, called transaction-consistent checkpointing ([Gra79, GMB+81]).
The checkpointing starts by writing the begin checkpoint record in the log
and stopping the acceptance of any new transactions by the RM. Once the
active transactions are all completed, all the updated volatile database pages are
flushed to the stable database followed by the insertion of an end checkpoint
record into the log. In this case, the redo action only needs to start from the
end checkpoint record in the log. The undo action can go the reverse direction,
starting from the end of the log and stopping at the end checkpoint record.

Transaction-consistent checkpointing is not the most efficient algorithm,
since a significant delay is experienced by all the transactions. There are al-
ternative checkpointing schemes such as action-consistent checkpoints, fuzzy
checkpoints, and others ([Gra79, Lin79]).

7 Handling Media Failures

The previous discussion focused on nonmedia failures, where the database as
well as the log stored in the stable storage survive the failure. Media failures

13



may either be quite catastrophic, causing the loss of the stable database or of
the stable log, or they can simply result in partial loss of the database or the
log (e.g., loss of a track or two).

The methods that have been devised for dealing with this situation are again
based on duplexing. To cope with catastrophic media failures, an archive copy
of both the database and the log is maintained on a different (tertiary) storage
medium, which is typically the magnetic tape or CD-ROM. Thus the DBMS
deals with three levels of memory hierarchy: the main memory, random access
disk storage, and magnetic tape (Figure 7). To deal with less catastrophic
failures, having duplicate copies of the database and log may be sufficient.

Secondary
storage

Stable
database

Read

WriteWrite

Read

Main memory

Database
buffers

Local Recovery
Manager

Database Buffer
Manager

Fetch,
Flush

(Volatile
database)

Stable
log

Log
buffers

ReadW
rite Rea

d
W

rit
e

Archive
log

Archive
database

W
rit

e W
rite

Figure 7: Full Memory Hierarchy Managed by RM and BM

When a media failure occurs, the database is recovered from the archive copy
by redoing and undoing the transactions as stored in the archive log. The real
question is how the archive database is stored. If we consider the large sizes of
current databases, the overhead of writing the entire database to tertiary storage
is significant. Two methods that have been proposed for dealing with this are
to perform the archiving activity concurrent with normal processing and to
archive the database incrementally as changes occur so that each archive version
contains only the changes that have occurred since the previous archiving.

14



8 Implementation Details of Steal/No-Force Re-
covery

Now go and read Chapter 20 of the textbook

References

[AD85] R. Agrawal and D. J. DeWitt. Integrated Concurrency Control and
Recovery Mechanisms. ACM Trans. Database Syst., (December 1985),
10(4): 529–564.

[ABC+79] M.M. Astrahan, M.W. Blasgen, D.D. Chamberlin, K.P. Eswaran,
J.N. Gray, P.P. Griffiths, W.F. King, R.A. Lorie, P.R. McJones, J.W.
Mehl, G.R. Putzolu, I.L. Traiger, B.W. Wade, and V. Watson. System R:
A Relational Database Management System. ACM Trans. on Database
Syst. (June 1976), 1(2):97–137.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Con-
trol and Recovery in Database Systems. Reading, Mass.: Addison-
Wesley, 1987.

[Den68] P. J. Denning. The Working Set Model for Program Behavior. Com-
mun. ACM (May 1968), 11(5): 323–333.

[Den80] P. J. Denning. Working Sets: Past and Present. IEEE Trans. Software
Eng. (January 1980), SE-6(1): 64–84.

[EH84] W. Effelsberg and T. Härder. Principles of Database Buffer Manage-
ment. ACM Trans. Database Syst. (December 1984), 9(4): 560–595.

[Gra79] J. N. Gray. Notes on Data Base Operating Systems. In R. Bayer, R.
M. Graham, and G. Seegmüller (eds.), Operating Systems: An Advanced
Course, New York: Springer-Verlag, 1979, pp. 393–481.

[GMB+81] J. N. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price,
F. Putzolu, and I. Traiger. The Recovery Manager of the System R
Database Manager. ACM Comput. Surv. (June 1981), 13(2): 223–242.

[HR83] T. Härder and A. Reuter. Principles of Transaction-Oriented Database
Recovery. ACM Comput. Surv. (December 1983), 15(4): 287–317.

[LS76] B. Lampson and H. Sturgis. Crash Recovery in Distributed Data Storage
System. Technical Report, Palo Alto, Calif.: Xerox Palo Alto Research
Center, 1976.

[Lin79] B. Lindsay. Notes on Distributed Databases. Technical Report RJ 2517,
San Jose, Calif.: IBM San Jose Research Laboratory, 1979.

15



[SL76] D. G. Severence and G. M. Lohman. Differential Files: Their Application
to the Maintenance of Large Databases. ACM Trans. Database Syst.
(September 1976), 1(3): 256–261.

[Sto81] M. Stonebraker. Operating System Support for Database Management.
Commun. ACM (July 1981), 24(7): 412–418.

[Ver 78] J. S. Verhofstadt. Recovery Techniques for Database Systems. ACM
Comput. Surv. (June 1978), 10(2): 168–195.

16


