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Concurrency Control

n The problem of synchronizing concurrent 
transactions such that the consistency of the 
database is maintained while, at the same time, 
maximum degree of concurrency is achieved.

n Principles:
l We want to interleave the execution of transactions for 

performance reasons
à E.g., execute operations of another transaction when the first 

one starts doing I/O.
l However, we want the results of interleaved executions 

to be equivalent to non-interleaved execution for 
correctness

à We need to be able to reason about the execution order of 
transactions.
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Potential Anomalies Due to 
Concurrent Execution

n Lost updates
l The effects of some transactions are not reflected in the database.
l Transaction T2 reading uncommitted changes to data made by 

transaction T1.
à Write-Read conflicts

l Transaction T2 overwriting uncommitted changes of transaction T1.
à Write-Write conflicts

n Inconsistent retrievals (unrepeatable reads)
l A transaction, if it reads the same data item more than once, should 

always read the same value.
l Transaction T2 modifies data that is being accessed by transaction T1. 

à Read-Write conflicts
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Execution Schedule (or History)

n An order in which the operations of a set of 
transactions are executed.

n A schedule (history) can be defined as a partial 
order over the operations of a set of transactions.

H1=W2(x) R1(x) R3(x) W1(x) C1W2(y) R3(y) R2(z) C2 R3(z) C3}

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit
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A complete schedule SC(T) over a set of transactions 
T={T1, …, Tn} is a partial order SC(T)={ΣT, < T} 
where

¶ ΣT = ∪i Σi , for  i = 1, 2, …, n

· < T ⊇ ∪i < i , for  i = 1, 2, …, n

¸ For any two conflicting operations oij, okl ∈ ΣT, either 
oij < T  okl or okl < T  oij

(Remember: oij is an operation of transaction Ti)

Formalization of Schedule
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Complete Schedule – Example
Given three transactions

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

A possible complete schedule is given as the DAG

C1

R3(x)R1(x) W2(x)

W1(x) W2(y) R3(y)

R3(z)R2(z)

C2 C3
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A schedule is a prefix of a complete schedule such that 
only some of the operations and only some of the 
ordering relationships are included.

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

Schedule Definition

R1(x)

C1

R3(x)R1(x) R3(x)W2(x)W2(x)

W1(x) W2(y)W2(y) R3(y)R3(y)

R3(z)R3(z) R2(z)R2(z)

C2 C3

ý
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Serial Schedule
n All the actions of a transaction occur consecutively.
n No interleaving of transaction operations.
n If each transaction is consistent (obeys integrity 

rules), then the database is guaranteed to be 
consistent at the end of executing a serial schedule.

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

Hs= W2(x) W2(y) R2(z) C2 R1(x) W1(x) C1 R3(x) R3(y) R3(z) C3}

T2 T1 T3→ →
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Serializable Schedule
n Transactions execute concurrently, but the net effect 

of the resulting schedule upon the database is 
equivalent to some serial schedule.

n Equivalent with respect to what?
l Conflict equivalence: the relative order of execution of the 

conflicting operations belonging to committed transactions in 
two schedules are the same.

l Conflicting operations: two incompatible operations (e.g., 
Read and Write) conflict if they both access the same data 
item.

à Incompatible operations of each transaction is assumed to 
conflict; do not change their execution orders.

à If two operations from two different transactions conflict, the 
corresponding transactions are also said to conflict.
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Serializable Schedule

The following are not conflict equivalent

Hs=W2(x) W2(y) R2(z) C2 R1(x) W1(x) C1 R3(x) R3(y) R3(z) C3

H1=W2(x) R1(x)  R3(x) W1(x) C1 W2(y) R3(y) R2(z) C2 R3(z) C3

The following are conflict equivalent; therefore 
H2 is serializable.

Hs=W2(x) W2(y) R2(z) C2 R1(x) W1(x) C1 R3(x) R3(y) R3(z) C3

H2=W2(x) R1(x) W1(x) C1 R3(x) W2(y) R3(y) R2(z) C2 R3(z) C3

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit
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Serializability Graph

n Serializability graph SGH={V,E} for schedule H:
l V={T | T is a committed transaction in H}
l E={Ti → Tj if oij ∈ Ti and okl ∈ Tk conflict and oij< H okl}

T2 T1

T3

H1

T2 T1

T3

H2

n Theorem: Schedule H is serializable iff SGH does 
not contain any cycles.
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Concurrency Control Algorithms

n Pessimistic
l Two-Phase Locking-based (2PL)
l Timestamp Ordering (TO)

n Optimistic
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Locking-Based Algorithms
n Transactions indicate their intentions by requesting locks 

from the scheduler (called lock manager).
n Locks are either read lock (rl) [also called shared lock] or 

write lock (wl) [also called exclusive lock]
n Read locks and write locks conflict (because Read and 

Write operations are incompatible
rl wl

rl yes no
wl no no

n Locking works nicely to allow concurrent processing of 
transactions.



9-13

Two-Phase Locking (2PL)
¶ A Transaction locks an object before using it.
· When an object is locked by another transaction, the 

requesting transaction must wait.
¸ When a transaction releases a lock, it may not request 

another lock.

Obtain lock

Release lock

Lock point

Phase 1 Phase 2

BEGIN END

N
o.

 o
f l

oc
ks
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Strict 2PL

Hold locks until the end.

Obtain lock

Release lock

BEGIN END
Transaction
durationperiod of

data item
use
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Timestamp Ordering
¶ Transaction (Ti) is assigned a globally unique timestamp ts(Ti).
· Transaction manager attaches the timestamp to all operations 

issued by the transaction.
¸ Each data item is assigned a write timestamp (wts) and a read 

timestamp (rts):
l rts(x) = largest timestamp of any read on x
l wts(x) = largest timestamp of any write on x

¹ Conflicting operations are resolved by timestamp order.
Basic T/O:
for Ri(x): for Wi(x):
if ts(Ti) < wts(x) if ts(Ti) < rts(x) or ts(Ti) < wts(x) 
then reject Ri(x) then reject Wi(x)
else {accept Ri(x) else {accept Wi(x)

rts(x) ← ts(Ti) } wts(x) ← ts(Ti) }
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Multiversion Timestamp Ordering

n Do not modify the values in the database, create new 
values.

n A Ri(x) is translated into a read on one version of x. 
l Find a version of x (say xv) such that ts(xv) is the largest timestamp 

less than ts(Ti).

n A Wi(x) is translated into Wi(xw) and accepted if the 
scheduler has not yet processed any Rj(xr) such that

ts(Ti) < ts(xr) < ts(Tj) 

Wi(x) Some other transaction
created xr

Rj(xr)
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Pessimistic execution

Optimistic execution

Validate Read Compute Write

ValidateRead Compute Write

Optimistic Concurrency Control 
Algorithms
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Optimistic CC Validation Test

¶ If all transactions Tk where ts(Tk) < ts(Ti) have 
completed their write phase before Ti has started 
its read phase, then validation succeeds

l Transaction executions in serial order

Tk
R V W

R V WTi
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Optimistic CC Validation Test
· If there is any transaction Tk such that ts(Tk)<ts(Ti) 

and which completes its write phase while Ti is in 
its read phase, then validation succeeds if WS(Tk) ∩
RS(Ti) = Ø

l Read and write phases overlap, but Ti does not read 
data items written by Tk

R V WTk
R V WTi
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Optimistic CC Validation Test

¸ If there is any transaction Tk such that ts(Tk)< ts(Ti) 
and which completes its read phase before Ti 
completes its read phase, then validation succeeds if 
WS(Tk) ∩ RS(Ti) = Ø and WS(Tk) ∩ WS(Ti) = Ø
l They overlap, but don't access any common data items.

R V WTk
R V WTi
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n A transaction is deadlocked if it is blocked and will 
remain blocked until there is intervention.

n Locking-based CC algorithms may cause 
deadlocks.

n Wait-for graph
l If transaction Ti waits for another transaction Tj to 

release a lock on an entity, then Ti → Tj in WFG.

Deadlock

Ti
Tj
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n Prevention
l Guaranteeing that deadlocks can never occur in 

the first place. Check transaction when it is 
initiated. Requires no run time support.

n Avoidance
l Detecting potential deadlocks in advance and 

taking action to insure that deadlock will not 
occur. Requires run time support.

n Detection and Recovery
l Allowing deadlocks to form and then finding 

and breaking them. As in the avoidance 
scheme, this requires run time support.

Deadlock Management
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n All resources that may be needed by a transaction must be 
predeclared.

l The system must guarantee that none of the resources will be 
needed by an ongoing transaction.

l Resources must only be reserved, but not necessarily allocated a
priori

l Unsuitable in database environment
l Suitable for systems that have no provisions for undoing processes.

n Evaluation:
– Reduced concurrency due to pre-allocation
– Evaluating whether an allocation is safe leads to added overhead.
– Difficult to determine (partial order)
+ No transaction rollback or restart is caused.

Deadlock Prevention
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n Transactions are not required to request resources a 
priori.

n Transactions are allowed to proceed unless a 
requested resource is unavailable.

n In case of conflict, transactions may be allowed to 
wait for a fixed time interval. 

n Order the data items and always request locks in 
that order.

n More attractive than prevention in a database 
environment.

Deadlock Avoidance
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WAIT-DIE Rule: If Ti requests a lock on a data item 
which is already locked by Tj, then Ti is permitted to 
wait iff ts(Ti)<ts(Tj). If ts(Ti)>ts(Tj), then Ti is aborted 
and restarted with the same timestamp.

l if ts(Ti)<ts(Tj) then Ti waits else Ti dies
l non-preemptive: Ti never preempts Tj

WOUND-WAIT Rule: If Ti requests a lock on a data 
item which is already locked by Tj , then Ti is 
permitted to wait iff ts(Ti)>ts(Tj). If ts(Ti)<ts(Tj), then 
Tj is aborted and the lock is granted to Ti.

l if ts(Ti)<ts(Tj) then Tj is wounded else Ti waits
l preemptive: Ti preempts Tj if it is younger

Deadlock Avoidance –
Wait-Die & Wound-Wait Algorithms
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n Transactions are allowed to wait freely.

n Wait-for graphs and cycles.

Deadlock Detection


