Concurrency Control

m The problem of synchronizing concurrent
transactions such that the consistency of the
database is maintained while, at the same time,
maximum degree of concurrency Is achieved.

m Principles:

® We want to interleave the execution of transactions for
performance reasons
w» E.g., execute operations of another transaction when the first
one starts doing 1/0O.
® However, we want the results of interleaved executions
to be equivalent to non-interleaved execution for
correctness

mw \We need to be able to reason about the execution order of
transactions.

9-1

Potential Anomalies Dueto
Concurrent Execution

m Lost updates

® The effects of some transactions are not reflected in the database.

e Transaction T, reading uncommitted changes to data made by
transaction T,.
w» Write-Read conflicts

e Transaction T, overwriting uncommitted changes of transaction T,.
» Write-Write conflicts
B Inconsistent retrievals (unrepeatabl e reads)

® A transaction, if it reads the same data item more than once, should
always read the same value.
e Transaction T, modifies datathat is being accessed by transaction T,.
w Read-Write conflicts

9-2

Execution Schedule (or History)

m An order in which the operations of a set of
transactions are executed.

B A schedule (history) can be defined as a partial
order over the operations of a set of transactions.

T,: Read(x) T,: Write(x) T, Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

H;=W,(x) R;(X) R5(x) Wy(x) C,W,(y) Rs(y) Ry(2) C, R4(2) Cj}

9-3

Formalization of Schedule

A complete schedule SC(T) over a set of transactions
T={T, ..., T} isapartia order C(T)={ S, < 1}
where

QST:EiSi Jfor1=1,2,...,n

®@<.EE < fori=12 ..,n

® For any two conflicting operations o;,, 0, | Sy, either
Ojj <1 O Or Oy <71 Gy

(Remember: o, isan operation of transaction T)

9-4

Complete Schedule — Example

Given three transactions

T,: Read(x) T, Write(X) T, Read(x)
Write(X) Write(y) Read(y)
Commit Read(2) Read(2)

Commit Commit

A possible complete schedule is given asthe DAG
Rl(X)‘iwzl(X) — > Ry(X)

v

WI(X) Wzi()/) > Ry(y)
c, R,(Z)—> Ry

(2)
1

C, Cs

9-5

Schedule Definition

A schedule is a prefix of a complete schedule such that

only some of the operations and only some of the
ordering relationships are included.

T, Read(x) T,: Write(x) T, Read(x)

Write(X) Write(y) Read(y)

Commit Read(2) Read(2)

Commit Commit
R () W,()—> Ry(X) Rl(X)<—W1(X) - RI(X)
W(x) W,(y)—> Ry(y) > Wzl(y) - R?l(y)
c, Ry(2)——* Ri(z) R,(2) —* Ry(2)

C, Cs

9-6

Serial Schedule

m All the actions of atransaction occur consecutively.
m No interleaving of transaction operations.

m |f each transaction Is consistent (obeys integrity
rules), then the database is guaranteed to be
consistent at the end of executing a serial schedule.

T,: Read(x) T,: Write(x) T, Read(x)
Write(X) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

H= W,(X) W,(Y) R,(2) C, R, (X) W, (X) C; Ry(X) Ry(y) Ry(2) C
: K2(><) 2(¥) Ry(2) /2\1()() 1(X) 5\3()() 3(¥) Rs(2) 3}

T, ® T, ® T,

9-7

Serializable Schedule

B Transactions execute concurrently, but the net effect
of the resulting schedule upon the database is
eguivalent to some serial schedule.

m Equivalent with respect to what?

e Conflict equivalence: therelative order of execution of the

conflicting operations belonging to committed transactions in
two schedules are the same.

e Conflicting operations: two incompatible operations (e.g.,
Read and Write) conflict if they both access the same data
item.

m | ncompatible operations of each transaction is assumed to
conflict; do not change their execution orders.

w |f two operations from two different transactions conflict, the
corresponding transactions are also said to conflict.

9-8

Serializable Schedule

T,: Read(x) T,: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

The following are not conflict equivalent
H.=W,(X) W,(y) R,(z) C, R,(x) W,(x) C; R;(X) R5(y) R;(2) C,
H,=W,(X) R;(X) R5(x) W, (x) C; W,(y) R5(y) R,(z) C, R4(2) C,

The following are conflict equivalent; therefore
H, iIs serializable.

H.=W,(x) W,(y) R,(z) C, R,(x) W,(x) C; R5(X) R5(y) R4(2) C;

H,=W,(x) R (x) W,(X) C; R3(x) W,(y) Rs(Y) R,(z) C, R4(2) C,

9-9

Serializability Graph

m Serializability graph SG,={V,E} for schedule H:
e V={T | T isacommitted transaction in H}
o E={T,® T;if g I T.andoyl T, conflict and 0;< O}

ST

m Theorem: Schedule His serlallzable Iff SGy, does
not contain any cycles.

9-10

Concurrency Control Algorithms

B Pessimistic
® Two-Phase Locking-based (2PL)
® Timestamp Ordering (TO)

m Optimistic

9-11

L ocking-Based Algorithms

Transactions indicate their intentions by requesting locks
from the scheduler (called lock manager).

Locks are either read lock (rl) [also called shared lock] or
write lock (W) [also called exclusive lock]

Read |ocks and write locks conflict (because Read and
Write operations are incompatible

rl W
rl yes no
W no no

L ocking works nicely to allow concurrent processing of
transactions.

9-12

Two-Phase Locking (2PL)

@ A Transaction locks an object before using it.

® When an object islocked by another transaction, the
requesting transaction must wait.

® When atransaction releases alock, it may not request

another lock. |
Lock point

T Obtain lock

—T l Release lock

1 Phase 1 Phase 2 J’_
BEGIN END

No. of locks

9-13

Strict 2PL

Hold locks until the end.

Mo, of locks

|

K

TObtain lock

lReIease lock

BEGIN

’\v_/' > Transaction
END

period of
data item
use

duration

9-14

Timestamp Ordering

@ Transaction (T;) is assigned a globally unique timestamp t(T;).
® Transaction manager attaches the timestamp to all operations
Issued by the transaction.
® Each dataitem is assigned a write timestamp (wts) and a read
timestamp (rts):
® rts(x) = largest timestamp of any read on X
® Wts(X) = largest timestamp of any write on X
@ Conflicting operations are resolved by timestamp order.
Basic T/O:

for R(X): for W(x):

if ts(T.) < wts(x) iIf tS(T.) < rts(x) or ts(T)) < wty(X)
then reject R(X) then reject W.(x)

else { accept R(X) else { accept W(X)

rs(x) = t(T) } witg(x) = t(T;) }

9-15

Multiversion Timestamp Ordering

m Do not modify the values in the database, create new
val ues.

B A R(X) istrandated into aread on one version of x.

e Find aversion of x (say X,) such that ts(x) isthe largest timestamp
less than ty(T)).

m A W(X) istrandlated into W(x,) and accepted if the
scheduler has not yet processed any R,(x,) such that

ts(T;) < ts(x;) <t(T;)
N

W(x) Someother transaction R(x))
created x. 916

Optimistic Concurrency Control
Algorithms

Pessimistic execution

Validate Read Compute Write

Optimistic execution

Read Compute Validate Write

9-17

Optimistic CC Validation Test

O If al transactions T, wheret(T,) < ts(T;) have
completed their write phase before T, has started
Its read phase, then validation succeeds

® Transaction executionsin serial order

9-18

Optimistic CC Validation Test

® If there is any transaction T, such that ts(T,)<ts(T;)
and which completesits write phase while T, Isin
Its read phase, then validation succeeds if WYT,) C
RYT,)=0
® Read and write phases overlap, but T, does not read
dataitemswritten by T,

9-19

Optimistic CC Validation Test

® |If thereisany transaction T, such that ts(T,)< tS(T,)
and which completes its read phase before T,
completes its read phase, then validation succeeds if

WXT,) € RYT;) = @ and WT,) C WYT;) =90

® They overlap, but don't access any common data items.

L R ¢V W
Y

W

9-20

Deadlock

m A transaction 1s deadlocked if it 1s blocked and will
remain blocked until there is intervention.

m L ocking-based CC algorithms may cause
deadl ocks.

m Wait-for graph

e If transaction T, walts for another transaction T; to
release alock on an entity, then T, ® T, in WFG.

T. Tj

9-21

Deadlock Management

B Prevention

@ Guaranteeing that deadlocks can never occur in
the first place. Check transaction when it is
Initiated. Requires no run time support.

B Avoidance

@ Detecting potential deadlocks in advance and
taking action to insure that deadlock will not
occur. Requires run time support.

m Detection and Recovery

® Allowing deadlocksto form and then finding
and breaking them. Asin the avoidance
scheme, this requires run time support.

9-22

Deadlock Prevention

m All resources that may be needed by atransaction must be
predeclared.

The system must guarantee that none of the resources will be
needed by an ongoing transaction.

Resources must only be reserved, but not necessarily allocated a
priori

Unsuitable in database environment

Suitable for systems that have no provisions for undoing processes.

m Evauation:

4+

Reduced concurrency due to pre-allocation

Evaluating whether an allocation is safe leads to added overhead.
Difficult to determine (partial order)
No transaction rollback or restart is caused.

9-23

Deadlock Avoidance

Transactions are not required to request resources a
priori.

Transactions are allowed to proceed unless a
regquested resource is unavailable.

In case of conflict, transactions may be allowed to
walit for afixed time interval.

Order the data items and always request locks in
that order.

More attractive than prevention in a database
environment.

9-24

Deadlock Avoidance —
Wait-Die & Wound-Wait Algorithms

WAIT-DIE Rule: I T; requests alock on a data item
which is already Iocked by T;, then T, Is permitted to
wait iff ts(T;)<ts(T;). If ts(T,)>ts(T) then T, Is aborted
and restarted with the same mestamp

o If tYT,)<t(T) then T, waitselse T, dies

® non-preemptive: T, never preempts T,
WOUND-WAIT Rule: If T, requests alock on a data
Iitem which is already Iocked by T , then T, is
permitted to wait Iff ts(T;)>ts(T;). If t(T,)<ts(T) then
T, Is aborted and the lock Is granted toT..

o if ts(T,)<t(T;) then T, is wounded eIseT waits

® preemptive: T, preempts T, if it isyounger

9-25

Deadlock Detection

B Transactions are allowed to wait freely.

m Wait-for graphs and cycles.

9-26

