Concurrency Control

m The problem of synchronizing concurrent
transactions such that the consistency of the
database is maintained while, at the same time,
maximum degree of concurrency is achieved.

m Principles:

® We want to interleave the execution of transactions for
performance reasons
w E.g., execute operations of another transaction when the first
one startsdoing 1/0.
® However, we want the results of interleaved executions
to be equivalent to noninterleaved execution for
correctness

m \\e need to be able to reason about the execution order of
transactions. 91

Potential Anomalies Due to
Concurrent Execution

m Lost updates
® The effects of some transactions are not reflected in the database.
® Transaction T, reading uncommitted changes to data made by
transaction T,.
w Write-Read conflicts
® Transaction T, overwriting uncommitted changes of transaction T;.
w WriteWrite conflicts
m Inconsistent retrievals (unrepeatable reads)
® A transaction, if it reads the same dataitem more than once, should
aways read the same value.
® Transaction T, modifies datathat is being accessed by transaction T;.
w Read-Write conflicts

9-2

Execution Schedule (or History)

m An order in which the operations of a set of
transactions are executed.

m A schedule (history) can be defined as a partial
order over the operations of a set of transactions.

T,: Read(x) T, Write(x) T4 Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

H;=W,(X) Ry (X) R3(X) Wy(X) C;W,(y) Rsly) Ra(2) C; Rs(2) Cs}

9-3

Formalization of Schedule

A complete schedule SC(T) over a set of transactions
T={T,, ..., T,} isapartia order SC(T)={S, <}
where

~

®S,=E S ,fori=1,2..,n
@< EE < fori=12 ..,n

® For any two conflicting operations o, 0 I Sy, either
Gjj <1 Og OF Oy < 1 O

(Remember: o;; isan operation of transaction T;)

9-4

Complete Schedule — Example

Given three transactions

T,: Read(x) T, Write(x) T;: Read(x)
Write(x) Write(y) Read(y)
Commit Read(2) Read(2)

Commit Commit

A possible complete schedule is given as the DAG

Ri(x) ¢ W (X) > R3(X)
v v

Wj(x) W,(y) * Rs(y)
\ v

C, R,(z) * Rs(2)
v v
C Cs

9-5

Schedule Definition

A schedule is a prefix of a complete schedule such that
only some of the operations and only some of the
ordering relationships are included.

T,: Read(x) T,: Write(x) T3 Read(x)
Write(x) Write(y) Read(y)
Commit Read(2) Read(2)
Commit Commit
R11x)< szx) » R;(X) Ry(X)« szx) >R3fx)
v v v v \4
W (%) Wzry) "RafY) gy Wzry) > Rsjy)
c, R2) *Ryf2) R(2) *Ry)
v v
C, Cs

9-6

Serial Schedule

m All the actions of atransaction occur consecutively.
m No interleaving of transaction operations.

m If each transaction is consistent (obeys integrity
rules), then the database is guaranteed to be
consistent at the end of executing a seria schedule.

T,: Read(x) T,: Write(x) T4 Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

H,= VQ’z(X) Wy(y) Ry(2) Cszk\’l(X) W, (x) Cl)F\G(X) Rs(y) Rs(2) Cg
4 Y 4

T, ® T, ® T,

9-7

Serializable Schedule

m Transactions execute concurrently, but the net effect
of the resulting schedule upon the database is
equivalent to some serial schedule.

m Equivalent with respect to what?

@ Conflict equivalence: therelative order of execution of the
conflicting operations belonging to committed transactionsin
two schedules are the same.

® Conflicting operations two incompatible operations (e.g.,
Read and Write) conflict if they both access the same data
item.

= |ncompatible operations of each transaction is assumed to
conflict; do not change their execution orders.

= |f two operations from two different transactions conflict, the
corresponding transactions are also said to conflict.

9-8

Serializable Schedule

T,: Read(x) T, Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

The following are not conflict equivalent
H=W,(X) Wo(y) R,(z) C; Ry(X) Wy(X) Cy Ry(X) R(y) R4(2) Cq
H=W,(X) Ry(X) R4(x) Wi(x) C1 Wy(y) R4(y) Ra(2) C, Ry(z) Cg
The following are conflict equivalent; therefore
H, is serializable.
H=W,(X) Wo(y) R,(z) C, Ry(X) Wy(X) Cy Rs(X) R(y) R4(2) Cq

Hy=W,(x) Ry(x) W4(X) C; R3(x) Wx(y) Ra(y) Ry(z) C, R5(2) Cs

Serializability Graph

m Serializability graph SG,,={V,E} for schedule H:
® V={T | T isacommitted transaction in H}
® E={T,® T,ifo;1 T;andoyl T,conflictand 0;<,04}

S

m Theorem: Schedule H is serializable iff SG,, does
not contain any cycles.

9-9

9-10

Concurrency Control Algorithms

m Pessmigtic
® Two-Phase Locking-based (2PL)
® Timestamp Ordering (TO)

m Optimigtic

L ocking-Based Algorithms

m Transactions indicate their intentions by requesting locks
from the scheduler (called lock manager).

m Locksareeither read lock (rl) [also called shared lock] or
write lock (wl) [also called exclusive lock]

m Read locks and write locks conflict (because Read and
Write operations are incompatible

rl wil
rl yes no
wi no no

m Locking works nicely to alow concurrent processing of
transactions.

9-11

9-12

Two-Phase Locking (2PL)

O A Transaction locks an object before using it.

® When an object is locked by another transaction, the
reguesting transaction must wait.

® When atransaction releases a lock, it may not request

another lock. _
Lock point

‘] Obtain lock

1

0 J Release lock
S]
(&)
o
s |]
O' ¥
|] .
! Phase 1 Phase 2
BEGIN END

9-13

Strict 2PL

Hold locks until the end.

|
A
‘ 1
= 1 Obtain lock
= 1 i |
3 j ! 'Release lock
|
1 |
T~ » Transaction
BEGIN END duration

period of
data item
use

9-14

Timestamp Ordering

O Transaction (T;) is assigned a globally unique timestamp ts(T;).
® Transaction manager attaches the timestamp to al operations
issued by the transaction.
® Each data item is assigned a write timestamp (wts) and a read
timestamp (rts):
® rts(x) = largest timestamp of any read on x
® Wts(x) = largest timestamp of any write onx
® Conflicting operations are resolved by timestamp order.
Basic T/O:

for R(X): for W(x):
if ts(T;) < wis(x) if ts(T;) < rts(x) or ts(T;) < wts(X)
then reject R(X) then reject Wi(x)
else{accept R(X) else{accept Wi(x)
rs() = ts(Tj } wts(x) ~ ts(T)) }

9-15

Multiversion Timestamp Ordering

m Do not modify the values in the database, create new
values.

m A R(X) istrandated into aread on one version of x.

@ Find aversion of x (say x,) such that ts(x,) isthe largest timestamp
less than ts(T;).

m A W(X) istrandated into Wi(x,,) and accepted if the
scheduler has not yet processed any R (x;) such that

/}S(Ti) < tf(xr) < tS(T\,-)\

Wi(x) Some other transaction R(x;)
created X, %16

Optimistic Concurrency Control
Algorithms

Pessimistic execution

Validate Read Compute Write

Optimistic execution

Read Compute Validate Write

9-17

Optimistic CC Validation Test

O If al transactions T, where ty(T,) < t(T;) have
completed their write phase before T, has started
its read phase, then validation succeeds

@ Transaction executions in serial order

Tk
—R——v——w

Ti

9-18

Optimistic CC Validation Test

O |f thereis any transaction T, such that t(T,)<ts(T;)
and which completesits write phase while T; isin
its read phase, then validation succeeds if WST,) C
RYT) =9

@ Read and write phases overlap, but T, does not read
data items written by T,

9-19

Optimistic CC Validation Test

® If thereisany transaction T, such that t(T,)< ty(T;)
and which completesits read phase before T,
completes its read phase, then validation succeeds if
WS(T,) G RS(T) = @ and WS(T,) G WS(T)) = @

® They overlap, but don't access any common data items.

9-20

Deadlock

m A transaction is deadlocked if it is blocked and will
remain blocked until there is intervention.

m L ocking-based CC agorithms may cause
deadlocks.

m Wait-for graph

e If transaction T; waits for another transaction T; to
release alock on an entity, then T; ® T; in WFG.

9-21

Deadlock Management

m Prevention

@ Guaranteeing that deadlocks can never occur in
the first place. Check transaction when it is
initiated. Requires no run time support.

m Avoidance

@ Detecting potential deadlocks in advance and
taking action to insure that deadlock will not
occur. Requires run time support.

m Detection and Recovery

@ Allowing deadlocks to form and then finding
and breaking them. As in the avoidance
scheme, this requires run time support.

9-22

Deadlock Prevention

m All resources that may be needed by a transaction must be
predeclared.

The system must guarantee that none of the resources will be
needed by an ongoing transaction.

Resources must only be reserved, but not necessarily allocated a
priori

Unsuitable in database environment

Suitable for systems that have no provisions for undoing processes.

m Evaluation:

+

Reduced concurrency due to pre-allocation

Evaluating whether an allocation is safe leads to added overhead.
Difficult to determine (partial order)

No transaction rollback or restart is caused.

9-23

Deadlock Avoidance

m Transactions are not required to request resources a

priori.

m Transactions are allowed to proceed unless a

requested resource is unavailable.

m In case of conflict, transactions may be allowed to

wait for afixed time interval.

m Order the dataitems and always request locks in

that order.

m More attractive than prevention in a database

environment.

9-24

Deadlock Avoidance —
Wait-Die & Wound-Wait Algorithms

WAIT-DIE Rule: If T; requests alock on adataitem
which is already Iocked by T, then T, is permitted to
wait iff ts(T;)<ts(T)). If t(T;)>ts(T) then T, isaborted
and restarted with the sameti m%tamp

o if ty(T))<ty(T)) thenT, waitselse T, dies

® non-preemptive: T; never preempts T,
WOUND-WAIT Rule: If T, requestsalock on adata
item which isalready locked by T, , then T, is
permitted to wait iff tS(T;)>t(T)). Ilf ts(T)<ts(T) then
T, is aborted and the lock is granted toT,.

o if ty(T;)<ty(T)) thenT; is wounded eIseT waits
® preemptive: Ti preempts T; if it is younger
9-25

Deadlock Detection

m Transactions are allowed to wait fregly.

m Wait-for graphs and cycles.

9-26

