
8-1

Transaction
n A transaction is a collection of actions that make

consistent transformations of system states while
preserving system consistency.
l concurrency transparency
l failure transparency

Database in a
consistent
state

Database may be
temporarily in an
inconsistent state
during execution

Begin
Transaction

End
Transaction

Execution of
Transaction

Database in a
consistent
state

8-2

Transaction Example –
A Simple SQL Query

…
main() {
…
EXEC SQL UPDATE Project

SET Budget = Budget * 1.1
WHERE Pname = `CAD/CAM’;

EXEC SQL COMMIT RELEASE;
return(0);
…}

8-3

Example Database

Consider an airline reservation example with the
relations:

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)
CUST(CNAME, ADDR, BAL)
FC(FNO, DATE, CNAME,SPECIAL)

8-4

Example Reservation Transaction

…
main {
…
EXEC SQL BEGIN DECLARE SECTION;

char flight_no[6], customer_name[20];
char day;

EXEC SQL END DECLARE SECTION;
scanf(flight_no, day, customer_name);
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = :flight_no AND DATE = :day;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES(:flight_no,:day,:customer_name, null);

printf(“Reservation completed”);
EXEC SQL COMMIT RELEASE;
return(0);}

8-5

Termination of Transactions…
main {
…

EXEC SQL BEGIN DECLARE SECTION;
char flight_no[6], customer_name[20];
char day; int temp1, temp2;

EXEC SQL END DECLARE SECTION;
scanf(flight_no, day, customer_name);
EXEC SQL SELECT STSOLD,CAP INTO :temp1,:temp2

FROM FLIGHT
WHERE FNO = :flight_no AND DATE = :day;

if temp1 = temp2 then {
printf(“no free seats”);
EXEC SQL ROLLBACK RELEASE;
return(-1);}

else {
EXEC SQL UPDATE FLIGHT
SET STSOLD = STSOLD + 1
WHERE FNO = :flight_no AND DATE = :day;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (:flight_no, :day, :customer_name, null);

EXEC SQL COMMIT RELEASE;
printf(“Reservation completed”);
return(0);}

}

8-6

Characterization

n Read set (RS)
l The set of data items that are read by a transaction

n Write set (WS)
l The set of data items whose values are changed by

this transaction
n Base set (BS)

l RS ∪ WS

8-7

Let
l oij(x) be some operation oj of transaction Ti operating on data

item x, where oj ∈ {read,write} and oj is atomic

l OSi = ∪j oij

l Ni ∈ {abort,commit}

Transaction Ti is a partial order Ti = {Σi, <i} where

¶ Σi = OSi ∪ {Ni }

· For any two operations oij, oik ∈ OSi , if oij = R(x) and
oik=W(x) for any data item x, then either oij<ioik or oik<ioij

¸ ∀oij ∈ OSi, oij <i Ni

Formalization

8-8

Consider a transaction T:
Read(x)
Read(y)
x ←x + y
Write(x)
Commit

Then
Σ = {R(x), R(y), W(x), C}
< = {(R(x), W(x)), (R(y), W(x)), (W(x), C), (R(x), C), (R(y), C)}

Example

8-9

Assume
< = {(R(x),W(x)), (R(y),W(x)), (R(x), C), (R(y), C), (W(x), C)}

DAG Representation

R(x)

C

R(y)

W(x)

8-10

Properties of Transactions

ATOMICITY
l all or nothing

CONSISTENCY
l no violation of integrity constraints

ISOLATION
l concurrent changes invisible ⇒ serializable

DURABILITY
l committed updates persist

8-11

n Either all or none of the transaction's operations are
performed.

n Atomicity requires that if a transaction is interrupted by a
failure, its partial results must be undone.

n The activity of preserving the transaction's atomicity in
presence of transaction aborts due to input errors, system
overloads, or deadlocks is called transaction recovery.

n The activity of ensuring atomicity in the presence of system
crashes is called crash recovery.

Atomicity

8-12

n Internal consistency
l A transaction which executes alone against a

consistent database leaves it in a consistent
state.

l Transactions do not violate database integrity
constraints.

n Transactions are correct programs

Consistency

8-13

Isolation

n Serializability
l If several transactions are executed concurrently, the

results must be the same as if they were executed
serially in some order.

n Incomplete results
l An incomplete transaction cannot reveal its results to

other transactions before its commitment.
l Necessary to avoid cascading aborts.

8-14

Isolation Example

n Consider the following two transactions:
T1: Read(x) T2: Read(x)

x ←x+1 x ←x+1
Write(x) Write(x)
Commit Commit

n Possible execution sequences:
T1: Read(x) T1: Read(x)
T1: x ←x+1 T1: x ←x+1
T1: Write(x) T2: Read(x)
T1: Commit T1: Write(x)
T2: Read(x) T2: x ←x+1
T2: x ←x+1 T2: Write(x)
T2: Write(x) T1: Commit
T2: Commit T2: Commit

8-15

Consistency Degrees
(due to Jim Gray)

n Degree 0
l Transaction T does not overwrite dirty data of other

transactions
l Dirty data refers to data values that have been updated

by a transaction prior to its commitment

n Degree 1
l T does not overwrite dirty data of other transactions
l T does not commit any writes before EOT

8-16

Consistency Degrees (cont’d)
(due to Jim Gray)

n Degree 2
l T does not overwrite dirty data of other transactions
l T does not commit any writes before EOT
l T does not read dirty data from other transactions

n Degree 3
l T does not overwrite dirty data of other transactions
l T does not commit any writes before EOT
l T does not read dirty data from other transactions
l Other transactions do not dirty any data read by T

before T completes.

8-17

SQL-92 Isolation Levels

Phenomena:
n Dirty read

l T1 modifies x which is then read by T2 before T1 terminates; T1
aborts ⇒ T2 has read value which never exists in the database.

n Non-repeatable (fuzzy) read
l T1 reads x; T2 then modifies or deletes x and commits. T1 tries to

read x again but reads a different value or can’t find it.

n Phantom
l T1 searches the database according to a predicate while T2 inserts

new tuples that satisfy the predicate.

8-18

SQL-92 Isolation Levels (cont’d)

n Read Uncommitted
l For transactions operating at this level, all three phenomena are

possible.

n Read Committed
l Fuzzy reads and phantoms are possible, but dirty reads are not.

n Repeatable Read
l Only phantoms possible.

n Anomaly Serializable
l None of the phenomena are possible.

8-19

n Once a transaction commits, the system must
guarantee that the results of its operations will
never be lost, in spite of subsequent failures.

n Database recovery

Durability

8-20

Transactions Provide…

n Atomic and reliable execution in the presence of failures

n Correct execution in the presence of multiple user accesses

n Correct management of replicas (if they support it)

8-21

Architecture

Scheduling/
Descheduling
Requests

Transaction Manager
(TM)

Transaction
Monitor

Begin_transaction,
Read, Write,
Commit, Abort

To execution
engine

Results

Scheduler
(SC)

8-22

Transaction Execution

Begin_Transaction,
Read, Write, Abort, EOT

Results &
User Notifications

Scheduled
Operations Results

Results

…

Read, Write,
Abort, EOT

User
Application

User
Application

Transaction
Manager

(TM)

Scheduler
(SC)

Recovery
Manager

(RM)

