Transaction

m A transaction is a collection of actions that make
consistent transformations of system states while
preserving system consistency.

@ concurrency transparency

o failure transparency

Database may be

temporarily in an Database in a

Database in a
consistent

consistent inconsistent state
state during execution state
| —~— |
Execution of End

Begin
Transaction

Transaction

Transaction

Transaction Example —
A Simple SQL Query

mai n() {

EXEC SQL UPDATE Proj ect
SET Budget = Budget * 1.1
VWHERE Pnanme = " CAD/ CAM ;
EXEC SQL COMWM T RELEASE;
return(O0);

8-1

8-2

Example Database

Consider an airline reservation example with the
relations:

FLIGHT(ENO, DATE, SRC, DEST, STSOLD, CAP)
CUST(CNAME, ADDR, BAL)
FC(ENO, DATE, CNAMESPECIAL)

8-3

Example Reservation Transaction

main {

EXEC SQ. BEG N DECLARE SECTI ON
char flight_no[6], customer_name[20];
char day;

EXEC SQ. END DECLARE SECTI ON;

scanf (flight_no, day, custoner_nane);

EXEC SQ. UPDATE FLI GHT

SET STSOLD = STSOLD + 1

WHERE FNO = :flight_no AND DATE = :day;
EXEC SQ. | NSERT

INTO FC(FNO, DATE, CNAME, SPECI AL)

VALUES(: flight_no, : day, : custoner_nane, null);
printf(“Reservation conpleted”);
EXEC SQ. COW T RELEASE
return(0);}

8-4

Termination of Transactions

mai n {

EXEC SQL BEG N DECLARE SECTI ON,
char flight_no[6], customer_nane[20];
char day; int tenpl, tenp2;
EXEC SQL END DECLARE SECTI ON;
scanf (flight_no, day, custoner_nane);
EXEC SQL SELECT STSOLD, CAP | NTO :tenpl,:tenp2
FROM FLI GHT
WHERE FNO = :flight_no AND DATE
if tenpl = tenp2 then {
printf(“no free seats”);
EXEC SQL ROLLBACK RELEASE;
return(-1);}
el se {
EXEC SQL UPDATE FLI GHT
SET STSOLD = STSOLD + 1
WHERE FNO = :flight_no AND DATE
EXEC SQL | NSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);

: day;

: day;

VALUES (: flight_no, :day, :custoner_name, null);

EXEC SQL COMM T RELEASE;
printf("“Reservation conpleted’);
return(0);}

Characterization

m Read set (RS)
® The set of dataitems that are read by a transaction
m Write set (WS)

® The set of dataitems whose values are changed by
this transaction

m Base st (BS)
® RSE WS

8-5

8-6

Formalization

Let
® 0;;(X) be some operation o; of transaction T; operating on data
item x, where oJ-T {read,write} and o; isatomic

e 0S=E,o;
e N, T {abort,commit}
Transaction T, isa partia order T, = {S;, <} where
® S =0SE{N}
® For any two operations o;;, o1 0S,if 0; = R(x) and
0, =W(x) for any data item x, then either 0;<j0;, Or 0;,<0;
® "o;1 0S,0;<N,

8-7

Example

Consider atransaction T:
Read(x)
Read(y)
XaX+y
Write(x)
Commit
Then
S ={Rx), R(y), Mx), C}
<={(RX), W(x)), (RlY), MX)), W), C), (Rx), C), (Ry), C)}

8-8

DAG Representation

Assume
<={(RX),WMX)), (Ry),WXx)), (R(x), C), (R(Y), C), (W), C)}

R(X)
Wx) — = C

R(Y)

8-9

Properties of Transactions

ATOM ICITY

® all or nothing

CONSI STENCY

® noviolation of integrity constraints

I SOLATION

® concurrent changesinvisible b seriaizable

DURABILITY

® committed updates persist

8-10

Atomicity

Either al or none of the transaction's operations are
performed.

Atomicity requires that if atransaction isinterrupted by a
failure, its partial results must be undone.

The activity of preserving the transaction's atomicity in
presence of transaction aborts due to input errors, system
overloads, or deadlocksis called transaction recovery.

The activity of ensuring atomicity in the presence of system
crashesis called crash recovery.

8-11

Consistency

m Internal consistency

@ A transaction which executes alone against a
consistent database leaves it in a consistent
Sate.

@ Transactions do not violate database integrity
constraints.

m Transactions are correct programs

8-12

| solation

m Serializability

o If several transactions are executed concurrently, the
results must be the same as if they were executed

serialy in some order.
m Incomplete results

@ An incomplete transaction cannot reved its results to

other transactions before its commitment.
® Necessary to avoid cascading aborts.

| solation Example

m Consider the following two transactions:

T,: Read(x) T,: Read(x)
X=X+l X= x+1
Write(x) Write(x)
Commit Commit

m Possible execution sequences.

T;: Read(x) T,: Read(x)

T X x+1 Ty X = x+1

Ty Write(x) T,: Read(x)

T, Commit Tq: Write(x)

T,: Read(x) Ty X = x+1

T,y XxX-x+l T,: Write(x)

T, Write(x) T, Commit

T,: Commit T,: Commit

8-13

8-14

Consistency Degrees
(due to Jm Gray)

m Degree O

@ Transaction T does not overwrite dirty data of other
transactions

o Dirty datarefers to data values that have been updated
by a transaction prior to its commitment
m Degreel
@ T does not overwrite dirty data of other transactions
@ T does not commit any writes before EOT

8-15

Consistency Degrees (cont’ d)
(due to Jim Gray)

m Degree 2
@ T does not overwrite dirty data of other transactions
@ T does not commit any writes before EOT
o T does not read dirty data from other transactions

m Degree 3
@ T does not overwrite dirty data of other transactions
@ T does not commit any writes before EOT
@ T does not read dirty data from other transactions

@ Other transactions do not dirty any dataread by T
before T completes.

8-16

SQL-92 Isolation Levels

Phenomena:

m Dirty read

® T, modifiesx which isthen read by T, before T, terminates; T,
abortsp T, hasread value which never existsin the database.

m Non-repeatable (fuzzy) read

® T, readsx; T, then modifies or deletes x and commits. T, tries to
read x again but reads a different value or can’t find it.

m Phantom

® T, searchesthe database according to a predicate while T, inserts
new tuplesthat satisfy the predicate.

8-17

SQL-92 Isolation Levels (cont’ d)

m Read Uncommitted

® For transactions operating at thislevel, al three phenomena are
possible.

m Read Committed

® Fuzzy reads and phantoms are possible, but dirty reads are not.
m Repeatable Read

® Only phantoms possible.

m Anomaly Serializable
® None of the phenomena are possible.

8-18

Durability

m Once atransaction commits, the system must
guarantee that the results of its operations will
never be logt, in spite of subsequent failures.

m Database recovery

8-19

Transactions Provide...

m Atomic and reliable execution in the presence of failures
m Correct execution in the presence of multiple user accesses

m Correct management of replicas (if they support it)

8-20

Architecture

Begin_transaction,
Read, Write,
Commit, Abort R?sults

Transaction
Monitor

Transaction Manager
(TM)
Scheduling/]

Descheduling
Requests

Sche'duler
(SC)
‘|

|

To execution
engine

8-21

Transaction Execution

Begin_Transaction, Results &
Read, Write, Abort, EOT User Notifications
Transaction
Manager
(T™M)
Read, Write, Result
Abort, EOT esults
\
Scheduler
(SC)
A} 7
A
Scheduled Results
Operations 1
v
Recovery
Manager
(RM)

8-22

