
7-1

Query Processing
high level user query (SQL)

Query
Processor

low level data manipulation
commands

(execution plan)

Query Compiler

Plan
Generator

Plan
Cost

Estimator

Plan Evaluator

7-2

Query Processing Components

■ Query language that is used
● SQL: “intergalactic dataspeak”

■ Query execution methodology
● The steps that one goes through in executing high-level

(declarative) user queries.

■ Query optimization
● How do we determine a good execution plan?

7-3

What are we trying to do?
■ Consider query

● “For each project whose budget is greater than $250000 and which
employs more than two employees, list the names and titles of
employees.”

■ In SQL
SELECT Ename, Title
FROM Emp, Project, Works
WHERE Budget > 250000
AND Emp.Eno=Works.Eno
AND Project.Pno=Works.Pno
AND Project.Pno IN

(SELECT w.Pno
FROM Works w
GROUP BY w.Pno
HAVING SUM(*) > 2)

■ How to execute this query?

7-4

A Possible Execution Plan

1. T1 ← Scan Project table and select all tuples
with Budget value > 250000

2. T2 ← Join T1 with the Works relation
3. T3 ← Join T2 with the Emp relation
4. T4 ← Group tuples of T3 over Pno
5. Scan tuples in each group of T4 and for groups

that have more than 2 tuples, Project over
Ename, Title

Note: Overly simplified – we’ll detail later.

7-5

Pictorial Representation

Project

σBudget>250000 Works

⋈ Emp

⋈

Group by

ΠEname, Title

T1

T2

T3

T4

1. How do we get this
plan?

2. How do we execute
each of the nodes?

ΠEname, Title(GroupPno,Eno(Emp⋈(σBudget>250000Project⋈Works)))

7-6

Query Processing Methodology

NormalizationNormalization

AnalysisAnalysis

SimplificationSimplification

RestructuringRestructuring

OptimizationOptimization

SQL Queries

“Optimal” Execution Plan

System
Catalog

7-7

■ Lexical and syntactic analysis
● check validity (similar to compilers)
● check for attributes and relations
● type checking on the qualification

■ Put into (query normal form
● Conjunctive normal form

(p11∨ p12∨ …∨ p1n) ∧ …∧ (pm1∨ pm2∨ …∨ pmn)
● Disjunctive normal form

(p11∧ p12 ∧ …∧ p1n) ∨ …∨ (pm1 ∧ pm2∧ …∧ pmn)
● OR's mapped into union
● AND's mapped into join or selection

Query Normalization

7-8

■ Refute incorrect queries
■ Type incorrect

● If any of its attribute or relation names are not defined in
the global schema

● If operations are applied to attributes of the wrong type
■ Semantically incorrect

● Components do not contribute in any way to the
generation of the result

● Only a subset of relational calculus queries can be tested
for correctness

● Those that do not contain disjunction and negation
● To detect

➠ connection graph (query graph)
➠ join graph

Analysis

7-9

SELECT Ename,Resp
FROM Emp, Works, Project
WHERE Emp.Eno = Works.Eno
AND Works.Pno = Project.Pno
AND Pname = ‘CAD/CAM’
AND Dur > 36
AND Title = ‘Programmer’

Query graph Join graph

Analysis – Example

Dur>36

Pname=�CAD/CAM�
Ename

Emp.Eno=Works.Eno Works.Pno=Project.Pno

RESULT

Title =
�Programmer�

Resp

Works.Pno=Project.PnoEmp.Eno=Works.Eno
Works

ProjectEmp Emp Project

Works

7-10

If the query graph is not connected, the query
may be wrong.

SELECT Ename,Resp
FROM Emp, Works, Project
WHERE Emp.Eno = Works.Eno
AND Pname = ‘CAD/CAM’
AND Dur > 36
AND Title = ‘Programmer’

Analysis

Pname=�CAD/CAM�
Ename RESULT

Resp

Works

ProjectEmp

7-11

■ Why simplify?
● The simpler the query, the easier (and more efficient) it

is to execute it

■ How? Use transformation rules
● elimination of redundancy

➠ idempotency rules
p1 ∧ ¬(p1) ⇔ false
p1 ∧ (p1 ∨ p2) ⇔ p1

p1 ∨ false ⇔ p1

…

● application of transitivity
● use of integrity rules

Simplification

7-12

SELECT Title
FROM Emp
WHERE Ename = ‘J. Doe’
OR (NOT(Title = ‘Programmer’)
AND (Title = ‘Programmer’
OR Title = ‘Elect. Eng.’)
AND NOT(Title = ‘Elect. Eng.’))

⇓
SELECT Title
FROM Emp
WHERE Ename = ‘J. Doe’

Simplification – Example

7-13

■ Convert SQL to relational algebra
■ Make use of query trees
■ Example

SELECT Ename

FROM Emp, Works, Project

WHERE Emp.Eno = Works.Eno

AND Works.Pno = Project.Pno

AND Ename <> ‘J. Doe’

AND Pname = ‘CAD/CAM’

AND (Dur = 12 OR Dur = 24)

Restructuring
ΠENAME

σDUR=12 OR DUR=24

σPNAME=�CAD/CAM�

σENAME≠�J. DOE�

Project Works Emp

Project

Select

Join

⋈PNO

⋈ENO

7-14

How to implement operators

■ Selection (assume R has n pages)
● Scan without an index – O(n)
● Scan with index

➠ B+ index – O(logn)
➠ Hash index – O(1)

■ Projection
● Without duplicate elimination – O(n)
● With duplicate elimination

➠ Sorting-based – O(nlogn)
➠ Hash-based – O(n+t) where t is the result of hashing phase

7-15

How to implement operators
(cont’d)

■ Join
● Nested loop join: R⋈S
foreach tuple r∈ R do

foreach tuple s∈ S do
if r==s then add <r,s> to result

● O(n*m)
● Improvements possible by

➠ page-oriented nested loop join
➠ block-oriented nested loop join

7-16

How to implement operators
(cont’d)

■ Join
● Index nested loop join: R⋈S
foreach tuple r∈ R do
use index on join attr. to find tuples of S

foreach such tuple s∈ S do
add <r,s> to result

● Sort-merge join
➠ Sort R and S on the join attribute
➠ Merge the sorted relations

● Hash join
➠ Hash R and S using a common hash function
➠ Within each bucket, find tuples where r=s

7-17

Index Selection Guidelines

■ Hash vs tree index
● Hash index on inner is very good for Index Nested

Loops.
➠ Should be clustered if join column is not key for inner, and

inner tuples need to be retrieved.

● Clustered B+ tree on join column(s) good for Sort-
Merge.

7-18

Example 1

SELECT e.Ename, w.Dur
FROM Emp e, Works w
WHERE w.Resp=‘Mgr’
AND e.Eno=w.Eno

■ Hash index on w.Resp supports ‘Mgr’ selection.
■ Hash index on w.Eno allows us to get matching (inner) Emp

tuples for each selected (outer) Works tuple.
■ What if WHERE included: “AND e.Title=`Programmer’’’?

● Could retrieve Emp tuples using index on e.Title, then join with
Works tuples satisfying Resp selection.

7-19

Example 2
SELECT e.Ename, w.Resp
FROM Emp e, Works w
WHERE e.Age BETWEEN 45 AND 60
AND e.Title=‘Programmer’
AND e.Eno=w.Eno

■ Clearly, Emp should be the outer relation.
● Suggests that we build a hash index on w.Eno.

■ What index should we build on Emp?
● B+ tree on e.Age could be used, OR an index on e.Title could be used.

Only one of these is needed, and which is better depends upon the
selectivity of the conditions.

➠ As a rule of thumb, equality selections more selective than range selections.

■ As both examples indicate, our choice of indexes is guided by
the plan(s) that we expect an optimizer to consider for a query.
Have to understand optimizers!

7-20

Examples of Clustering

SELECT e.Title
FROM Emp e
WHERE e.Age > 40

■ B+ tree index on e.Age can be used to get
qualifying tuples.
● How selective is the condition?
● Is the index clustered?

7-21

Clustering and Joins

SELECT e.Ename, p.Pname
FROM Emp e, Project p
WHERE p.Budget=‘350000’
AND e.City=p.City

■ Clustering is especially important when accessing inner tuples
in Index Nested Loop join.

● Should make index on e.City clustered.
■ Suppose that the WHERE clause is instead:

WHERE e.Title=‘Programmer’ AND e.City=p.City

● If many employees are Programmers, Sort-Merge join may be worth
considering. A clustered index on p.City would help.

■ Summary: Clustering is useful whenever many tuples are to
be retrieved.

7-22

SELECT Ename
FROM Emp e,Works w
WHERE e.Eno = w.Eno
AND w.Dur > 37

Strategy 1
ΠENAME(σDUR>37∧ EMP.ENO=ASG.ENO (Emp × Works))

Strategy 2
ΠENAME(Emp⋈ENO (σDUR>37 (Works)))

■ Strategy 2 is “better” because
● It avoids Cartesian product
● It selects a subset of Works before joining

■ How to determine the “better” alternative?

Selecting Alternatives

7-23

Query Optimization Issues –
Types of Optimizers

■ “Exhaustive” search
● cost-based
● optimal
● combinatorial complexity in the number of relations

■ Heuristics
● not optimal
● regroup common sub-expressions
● perform selection, projection as early as possible
● reorder operations to reduce intermediate relation size
● optimize individual operations

7-24

Query Optimization Issues –
Optimization Granularity

■ Single query at a time
● cannot use common intermediate results

■ Multiple queries at a time
● efficient if many similar queries
● decision space is much larger

7-25

Query Optimization Issues –
Optimization Timing

■ Static
● compilation ⇒ optimize prior to the execution
● difficult to estimate the size of the intermediate results
⇒ error propagation

● can amortize over many executions
■ Dynamic

● run time optimization
● exact information on the intermediate relation sizes
● have to reoptimize for multiple executions

■ Hybrid
● compile using a static algorithm
● if the error in estimate sizes > threshold, reoptimize at

run time

7-26

Query Optimization Issues –
Statistics

■ Relation
● cardinality
● size of a tuple
● fraction of tuples participating in a join with another

relation
● …

■ Attribute
● cardinality of domain
● actual number of distinct values
● …

■ Common assumptions
● independence between different attribute values
● uniform distribution of attribute values within their

domain

7-27

Query Optimization Components

■ Cost function (in terms of time)
● I/O cost + CPU cost
● These might have different weights
● Can also maximize throughput

■ Solution space
● The set of equivalent algebra expressions (query trees).

■ Search algorithm
● How do we move inside the solution space?
● Exhaustive search, heuristic algorithms (iterative

improvement, simulated annealing, genetic,…)

7-28

Cost Calculation

■ Cost function takes CPU and I/O processing into
account
● Instruction and I/O path lengths

■ Estimate the cost of executing each node of the
query tree
● Is pipelining used or are temporary relations created?

■ Estimate the size of the result of each node
● Selectivity of operations – “reduction factor”
● Error propagation is possible

7-29

Selection
size(R) = card(R) ∗ length(R)
card(σF (R)) = SFσ (F) ∗ card(R)

where

Intermediate Relation Sizes

S Fσ(A = value) =
card(∏A(R))

1

S Fσ(A > value) =
max(A) � min(A)
max(A) � value

S Fσ(A < value) =
max(A) � min(A)
value – min(A)

SFσ(p(Ai) ∧ p(Aj)) = SFσ(p(Ai)) ∗ SFσ(p(Aj))

SFσ(p(Ai) ∨ p(Aj)) = SFσ(p(Ai)) + SFσ(p(Aj)) � (SFσ(p(Ai)) ∗ SFσ(p(Aj)))
SFσ(A ∈ value) = SFσ(A= value) ∗ card({values})

7-30

Projection

card(ΠA(R))=card(R)

Cartesian Product
card(R × S) = card(R) ∗ card(S)

Union
upper bound: card(R ∪ S) = card(R) + card(S)

lower bound: card(R ∪ S) = max{card(R), card(S)}

Set Difference
upper bound: card(R–S) = card(R)

lower bound: 0

Intermediate Relation Sizes

7-31

Join
● Special case: A is a key of R and B is a foreign key

of S;

card(R ⋈A=B S) = card(S)

● More general:

card(R ⋈ S) = SFJ ∗ card(R) ∗ card(S)

Intermediate Relation Size

7-32

Search Space

■ Characterized by “equivalent” query plans
● Equivalence is defined in terms of equivalent query

results

■ Equivalent plans are generated by means of
algebraic transformation rules

■ The cost of each plan may be different
■ Focus on joins

7-33

Search Space – Join Trees

■ For N relations, there are O(N!)
equivalent join trees that can be
obtained by applying commutativity
and associativity rules

SELECT Ename,Resp

FROM Emp, Works, Project

WHERE Emp.Eno=Works.Eno

AND Works.PNO=Project.PNO

Project

WorksEmp

Project Works

Emp

Project

Works

Emp

×

⋈
⋈

⋈
⋈

⋈

7-34

■ Commutativity of binary operations
● R × S ⇔ S × R
● R ⋈ S ⇔ S⋈ R
● R ∪ S ⇔ S ∪ R

■ Associativity of binary operations
● (R × S) × T ⇔ R × (S × T)
● (R⋈ S) ⋈ T ⇔ R ⋈ (S⋈ T)

■ Idempotence of unary operations
● ΠA’(ΠA’’(R)) ⇔ ΠA’(R)
● σp1(A1)(σp2(A2)(R)) = σp1(A1) ∧ p2(A2)(R)
where R[A] and A' ⊆ A, A" ⊆ A and A' ⊆ A"

Transformation Rules

7-35

■ Commuting selection with projection
■ Commuting selection with binary operations

● σp(A)(R × S) ⇔ (σp(A) (R)) × S
● σp(Ai)

(R⋈(Aj,Bk) S) ⇔ (σp(Ai)
(R)) ⋈(Aj,Bk) S

● σp(Ai)
(R ∪ T) ⇔ σp(Ai)

(R) ∪ σ p(Ai)
(T)

where Ai belongs to R and T
■ Commuting projection with binary operations

● ΠC(R × S) ⇔ Π A’(R) × Π B’(S)

● ΠC(R ⋈(Aj,Bk) S) ⇔ Π A’(R) ⋈(Aj,Bk) Π B’(S)

● ΠC(R ∪ S) ⇔ Π C (R) ∪ Π C (S)

where R[A] and S[B]; C = A' ∪ B' where A' ⊆ A, B' ⊆ B, Aj ⊆ A',
Bk ⊆ B'

Transformation Rules

7-36

Example
Consider the query:

Find the names of employees other than J.
Doe who worked on the CAD/CAM project
for either one or two years.

SELECT Ename
FROM Project p, Works w,

Emp e
WHERE w.Eno=e.Eno
AND w.Pno=p.Pno
AND Ename<>`J. Doe’
AND p.Pname=`CAD/CAM’
AND (Dur=12 OR Dur=24)

ΠENAME

σDUR=12 OR DUR=24

σPNAME=�CAD/CAM�

σENAME≠�J. DOE�

Project Works Emp

Project

Select

Join

⋈

⋈

7-37

Equivalent Query
ΠEname

σPname=`CAD/CAM� ∧ (Dur=12 ∨ Dur=24) ∧ Ename<>`J. DOE�

×

ProjectWorks Emp

⋈

7-38

Emp

ΠEname

σEname <> `J. Doe�

WorksProject

ΠEno,Ename

σPname = `CAD/CAM�

ΠPno

σDur =12 ∧ Dur=24

ΠPno,Eno

ΠPno,Ename

Another Equivalent Query

⋈

⋈

7-39

Search Strategy
■ How to “move” in the search space.
■ Deterministic

● Start from base relations and build plans by adding one
relation at each step

● Dynamic programming: breadth-first
● Greedy: depth-first

■ Randomized
● Search for optimalities around a particular starting point
● Trade optimization time for execution time
● Better when > 5-6 relations
● Simulated annealing
● Iterative improvement

7-40

Search Algorithms
■ Restrict the search space

● Use heuristics
➠ E.g., Perform unary operations before binary operations

● Restrict the shape of the join tree
➠ Consider only linear trees, ignore bushy ones

R2R1

R3

R4

Linear Join Tree

R2R1 R4R3

Bushy Join Tree

⋈

⋈

⋈

⋈

⋈ ⋈

7-41

Search Strategies
■ Deterministic

■ Randomized
R2R1

R3

R4

R2R1 R2R1

R3

R2R1

R3

R3R1

R2

⋈ ⋈

⋈

⋈

⋈

⋈

⋈

⋈

⋈

⋈

7-42

Summary
■ Declarative SQL queries need to be converted into

low level execution plans
■ These plans need to be optimized to find the

“best” plan
■ Optimization involves

● Search space: identifies the alternative plans and
alternative execution algorithms for algebra operators

➠ This is done by means of transformation rules
● Cost function: calculates the cost of executing each plan

➠ CPU and I/O costs
● Search algorithm: controls which alternative plans are

investigated

