Query Processing

Query Processing Components

- Query language that is used
 - SQL: “intergalactic dataspeak”

- Query execution methodology
 - The steps that one goes through in executing high-level (declarative) user queries.

- Query optimization
 - How do we determine a good execution plan?
What are we trying to do?

- Consider query
 - “For each project whose budget is greater than $250000 and which employs more than two employees, list the names and titles of employees.”

- In SQL

  ```sql
  SELECT Ename, Title
  FROM Emp, Project, Works
  WHERE Budget > 250000
  AND Emp.Eno=Works.Eno
  AND Project.Pno=Works.Pno
  AND Project.Pno IN
  (SELECT w.Pno
   FROM Works w
   GROUP BY w.Pno
   HAVING SUM(*) > 2)
  ```

- How to execute this query?

A Possible Execution Plan

1. $T_1 \leftarrow$ Scan `Project` table and select all tuples with `Budget` value > 250000
2. $T_2 \leftarrow$ Join T_1 with the `Works` relation
3. $T_3 \leftarrow$ Join T_2 with the `Emp` relation
4. $T_4 \leftarrow$ Group tuples of T_3 over `Pno`
5. Scan tuples in each group of T_4 and for groups that have more than 2 tuples, `Project` over `Ename, Title`

Note: Overly simplified – we’ll detail later.
Pictorial Representation

1. How do we get this plan?
2. How do we execute each of the nodes?

\[\pi_{\text{Ename}, \text{Title}} (\text{Group}_{\text{pno}, \text{eno}} (\text{Emp} \bowtie (\sigma_{\text{Budget} > 250000} \text{Project} \bowtie \text{Works}))) \]

Query Processing Methodology

SQL Queries
- Normalization
- Analysis
- Simplification
- Restructuring
- Optimization

“Optimal” Execution Plan
Query Normalization

- **Lexical and syntactic analysis**
 - check validity (similar to compilers)
 - check for attributes and relations
 - type checking on the qualification

- **Put into (query normal form)**
 - Conjunctive normal form
 \[(p_{11} \lor p_{12} \lor \ldots \lor p_{1n}) \land \ldots \land (p_{m1} \lor p_{m2} \lor \ldots \lor p_{mn})\]
 - Disjunctive normal form
 \[(p_{11} \land p_{12} \land \ldots \land p_{1n}) \lor \ldots \lor (p_{m1} \land p_{m2} \land \ldots \land p_{mn})\]
 - OR's mapped into union
 - AND's mapped into join or selection

Analysis

- **Refute incorrect queries**
- **Type incorrect**
 - If any of its attribute or relation names are not defined in the global schema
 - If operations are applied to attributes of the wrong type

- **Semantically incorrect**
 - Components do not contribute in any way to the generation of the result
 - Only a subset of relational calculus queries can be tested for correctness
 - Those that do not contain disjunction and negation
 - To detect
 - connection graph (query graph)
 - join graph
Analysis – Example

```
SELECT Ename, Resp
FROM Emp, Works, Project
WHERE Emp.Eno = Works.Eno
AND Works.Pno = Project.Pno
AND Pname = 'CAD/CAM'
AND Dur > 36
AND Title = 'Programmer'
```

Query graph

- **Emp**
 - Eno
 - Ename
 - Resp
 - Title = 'Programmer'
- **Works**
 - Eno = Works.Eno
 - Dur > 36
- **Project**
 - Pno
 - Pname = 'CAD/CAM'

Join graph

- **Emp**
 - Eno = Works.Eno
 - Ename
 - Resp
- **Works**
 - Eno = Works.Eno
 - Dur > 36
- **Project**
 - Pno = Project.Pno
 - Pname = 'CAD/CAM'

Analysis

If the query graph is not connected, the query may be wrong.

```
SELECT Ename, Resp
FROM Emp, Works, Project
WHERE Emp.Eno = Works.Eno
AND Pname = 'CAD/CAM'
AND Dur > 36
AND Title = 'Programmer'
```

Query graph

- **Emp**
 - Eno
 - Ename
 - Resp
 - Title = 'Programmer'
- **Works**
 - Eno = Works.Eno
 - Dur > 36
- **Project**
 - Pno
 - Pname = 'CAD/CAM'

Join graph

- **Emp**
 - Eno = Works.Eno
 - Ename
 - Resp
- **Works**
 - Eno = Works.Eno
 - Dur > 36
- **Project**
 - Pno = Project.Pno
 - Pname = 'CAD/CAM'
Simplification

- Why simplify?
 - The simpler the query, the easier (and more efficient) it is to execute it

- How? Use transformation rules
 - elimination of redundancy
 - idempotency rules
 \[p_1 \land \neg(p_1) \Leftrightarrow \text{false} \]
 \[p_1 \land (p_1 \lor p_2) \Leftrightarrow p_1 \]
 \[p_1 \lor \text{false} \Leftrightarrow p_1 \]
 ...
 - application of transitivity
 - use of integrity rules

Simplification – Example

```sql
SELECT Title
FROM Emp
WHERE Ename = 'J. Doe'
OR (NOT (Title = 'Programmer'))
AND (Title = 'Programmer')
OR Title = 'Elect. Eng.')
AND NOT (Title = 'Elect. Eng.'))
```

⇓

```sql
SELECT Title
FROM Emp
WHERE Ename = 'J. Doe'
```
Restructuring

- Convert SQL to relational algebra
- Make use of query trees
- Example

```
SELECT Ename
FROM Emp, Works, Project
WHERE Emp.Eno = Works.Eno
AND Works.Pno = Project.Pno
AND Ename <> 'J. Doe'
AND Pname = 'CAD/CAM'
AND (Dur = 12 OR Dur = 24)
```

How to implement operators

- Selection (assume \(R \) has \(n \) pages)
 - Scan without an index – \(O(n) \)
 - Scan with index
 - \(B^+ \) index – \(O(\log n) \)
 - Hash index – \(O(1) \)

- Projection
 - Without duplicate elimination – \(O(n) \)
 - With duplicate elimination
 - Sorting-based – \(O(n \log n) \)
 - Hash-based – \(O(n+t) \) where \(t \) is the result of hashing phase
How to implement operators (cont’d)

- Join
 - Nested loop join: \(R \bowtie S \)

    ```
    foreach tuple \( r \in R \) do
    foreach tuple \( s \in S \) do
    if \( r == s \) then add \( <r,s> \) to result
    ```
 - \(O(n^2m) \)
 - Improvements possible by
 - page-oriented nested loop join
 - block-oriented nested loop join

How to implement operators (cont’d)

- Join
 - Index nested loop join: \(R \bowtie S \)

    ```
    foreach tuple \( r \in R \) do
    use index on join attr. to find tuples of \( S \)
    foreach such tuple \( s \in S \) do
    add \( <r,s> \) to result
    ```
 - Sort-merge join
 - Sort \(R \) and \(S \) on the join attribute
 - Merge the sorted relations
 - Hash join
 - Hash \(R \) and \(S \) using a common hash function
 - Within each bucket, find tuples where \(r == s \)
Index Selection Guidelines

- **Hash vs tree index**
 - Hash index on inner is very good for Index Nested Loops.
 - Should be clustered if join column is not key for inner, and inner tuples need to be retrieved.
 - Clustered B+ tree on join column(s) good for Sort-Merge.

Example 1

```sql
SELECT e.Ename, w.Dur
FROM Emp e, Works w
WHERE w.Resp='Mgr'
AND e.Eno=w.Eno
```

- Hash index on w.Resp supports ‘Mgr’ selection.
- Hash index on w.Eno allows us to get matching (inner) Emp tuples for each selected (outer) Works tuple.
- What if WHERE included: “AND e.Title='Programmer’”?
 - Could retrieve Emp tuples using index on e.Title, then join with Works tuples satisfying Resp selection.
Example 2

```
SELECT e.Emame, w.Resp
FROM Emp e, Works w
WHERE e.Age BETWEEN 45 AND 60
AND e.Title='Programmer'
AND e.Emo=w.Emo
```

- Clearly, Emp should be the outer relation.
 - Suggests that we build a hash index on w.Emo.
- What index should we build on Emp?
 - B+ tree on e.Age could be used, OR an index on e.Title could be used.
 - Only one of these is needed, and which is better depends upon the selectivity of the conditions.
 - As a rule of thumb, equality selections more selective than range selections.
- As both examples indicate, our choice of indexes is guided by the plan(s) that we expect an optimizer to consider for a query.
 Have to understand optimizers!

Examples of Clustering

```
SELECT e.Title
FROM Emp e
WHERE e.Age > 40
```

- B+ tree index on e.Age can be used to get qualifying tuples.
 - How selective is the condition?
 - Is the index clustered?
Clustering and Joins

```
SELECT e.Ename, p.Pname
FROM Emp e, Project p
WHERE p.Budget='350000'
AND e.City=p.City
```

- Clustering is especially important when accessing inner tuples in Index Nested Loop join.
 - Should make index on e.City clustered.
- Suppose that the WHERE clause is instead:

  ```
  WHERE e.Title='Programmer' AND e.City=p.City
  ```
 - If many employees are Programmers, Sort-Merge join may be worth considering. A clustered index on p.City would help.
- Summary: Clustering is useful whenever many tuples are to be retrieved.

Selecting Alternatives

```
SELECT Ename
FROM Emp e, Works w
WHERE e.Eno = w.Eno
AND w.Dur > 37
```

Strategy 1

\[\Pi_{\text{Ename}}(\sigma_{\text{DUR}>37 \land \text{EMP.ENO=ASG.ENO}} (\text{Emp} \times \text{Works})) \]

Strategy 2

\[\Pi_{\text{Ename}}(\text{Emp} \bowtie_{\text{ENO}} (\sigma_{\text{DUR}>37} (\text{Works}))) \]

- Strategy 2 is “better” because
 - It avoids Cartesian product
 - It selects a subset of Works before joining
- How to determine the “better” alternative?
Query Optimization Issues – Types of Optimizers

- “Exhaustive” search
 - cost-based
 - optimal
 - combinatorial complexity in the number of relations

- Heuristics
 - not optimal
 - regroup common sub-expressions
 - perform selection, projection as early as possible
 - reorder operations to reduce intermediate relation size
 - optimize individual operations

Query Optimization Issues – Optimization Granularity

- Single query at a time
 - cannot use common intermediate results

- Multiple queries at a time
 - efficient if many similar queries
 - decision space is much larger
Query Optimization Issues – Optimization Timing

- Static
 - compilation ⇒ optimize prior to the execution
 - difficult to estimate the size of the intermediate results ⇒ error propagation
 - can amortize over many executions

- Dynamic
 - run time optimization
 - exact information on the intermediate relation sizes
 - have to reoptimize for multiple executions

- Hybrid
 - compile using a static algorithm
 - if the error in estimate sizes > threshold, reoptimize at run time

Query Optimization Issues – Statistics

- Relation
 - cardinality
 - size of a tuple
 - fraction of tuples participating in a join with another relation
 - …

- Attribute
 - cardinality of domain
 - actual number of distinct values
 - …

- Common assumptions
 - independence between different attribute values
 - uniform distribution of attribute values within their domain
Query Optimization Components

- **Cost function (in terms of time)**
 - I/O cost + CPU cost
 - These might have different weights
 - Can also maximize throughput

- **Solution space**
 - The set of equivalent algebra expressions (query trees).

- **Search algorithm**
 - How do we move inside the solution space?
 - Exhaustive search, heuristic algorithms (iterative improvement, simulated annealing, genetic,…)

Cost Calculation

- **Cost function takes CPU and I/O processing into account**
 - Instruction and I/O path lengths

- **Estimate the cost of executing each node of the query tree**
 - Is pipelining used or are temporary relations created?

- **Estimate the size of the result of each node**
 - Selectivity of operations – “reduction factor”
 - Error propagation is possible
Intermediate Relation Sizes

Selection

\[\text{size}(R) = \text{card}(R) \times \text{length}(R) \]
\[\text{card}(\sigma_F(R)) = SF_\sigma(F) \times \text{card}(R) \]

where

\[SF_\sigma(A = \text{value}) = \frac{1}{\text{card}(\prod_A(R))} \]
\[SF_\sigma(A > \text{value}) = \frac{\text{max}(A) - \text{value}}{\text{max}(A) - \text{min}(A)} \]
\[SF_\sigma(A < \text{value}) = \frac{\text{value} - \text{min}(A)}{\text{max}(A) - \text{min}(A)} \]

\[SF_\sigma(p(A_i) \land p(A_j)) = SF_\sigma(p(A_i)) \times SF_\sigma(p(A_j)) \]
\[SF_\sigma(p(A_i) \lor p(A_j)) = SF_\sigma(p(A_i)) + SF_\sigma(p(A_j)) - (SF_\sigma(p(A_i)) \times SF_\sigma(p(A_j))) \]
\[SF_\sigma(A \in \text{value}) = SF_\sigma(A = \text{value}) \times \text{card}([\text{values}]) \]

Intermediate Relation Sizes

Projection

\[\text{card}(\Pi_A(R)) = \text{card}(R) \]

Cartesian Product

\[\text{card}(R \times S) = \text{card}(R) \times \text{card}(S) \]

Union

upper bound: \[\text{card}(R \cup S) = \text{card}(R) + \text{card}(S) \]
lower bound: \[\text{card}(R \cup S) = \max\{\text{card}(R), \text{card}(S)\} \]

Set Difference

upper bound: \[\text{card}(R - S) = \text{card}(R) \]
lower bound: 0
Intermediate Relation Size

Join

- Special case: \(A\) is a key of \(R\) and \(B\) is a foreign key of \(S\):

\[\text{card}(R \bowtie_{A=B} S) = \text{card}(S)\]

- More general:

\[\text{card}(R \bowtie S) = SFJ \ast \text{card}(R) \ast \text{card}(S)\]

Search Space

- Characterized by “equivalent” query plans
 - Equivalence is defined in terms of equivalent query results
- Equivalent plans are generated by means of algebraic transformation rules
- The cost of each plan may be different
- Focus on joins
Search Space – Join Trees

- For N relations, there are $O(N!)$ equivalent join trees that can be obtained by applying **commutativity** and **associativity** rules.

SELECT Ename, Resp
FROM Emp, Works, Project
WHERE Emp.Eno=Works.Eno
AND Works.PNO=Project.PNO

Transformation Rules

- **Commutativity of binary operations**
 - $R \times S \leftrightarrow S \times R$
 - $R \bowtie S \leftrightarrow S \bowtie R$
 - $R \cup S \leftrightarrow S \cup R$

- **Associativity of binary operations**
 - $(R \times S) \times T \leftrightarrow R \times (S \times T)$
 - $(R \bowtie S) \bowtie T \leftrightarrow R \bowtie (S \bowtie T)$

- **Idempotence of unary operations**
 - $\Pi_{A'}(\Pi_{A''}(R)) \leftrightarrow \Pi_{A}^{'\prime}(R)$
 - $\sigma_{p_{1}(A_{1})}(\sigma_{p_{2}(A_{2})}(R)) = \sigma_{p_{1}(A_{1}) \land p_{2}(A_{2})}(R)$
 - where $R[A]$ and $A' \subseteq A$, $A'' \subseteq A$ and $A' \subseteq A''$
Transformation Rules

- Commuting selection with projection
- Commuting selection with binary operations
 - \(\sigma_{p(A)}(R \times S) \Leftrightarrow (\sigma_{p(A)}(R)) \times S \)
 - \(\sigma_{p(A)}(R \bowtie_{(A,B)} S) \Leftrightarrow (\sigma_{p(A)}(R)) \bowtie_{(A,B)} S \)
 - \(\sigma_{p(A)}(R \cup T) \Leftrightarrow \sigma_{p(A)}(R) \cup \sigma_{p(A)}(T) \)

where \(A_j \) belongs to \(R \) and \(T \)

- Commuting projection with binary operations
 - \(\Pi_C(R \times S) \Leftrightarrow \Pi_A(R) \times \Pi_B(S) \)
 - \(\Pi_C(R \bowtie_{(A,B)} S) \Leftrightarrow \Pi_A(R) \bowtie_{(A,B)} \Pi_B(S) \)
 - \(\Pi_C(R \cup S) \Leftrightarrow \Pi_C(R) \cup \Pi_C(S) \)

where \(R[A] \) and \(S[B] \); \(C = A' \cup B' \) where \(A' \subseteq A, B' \subseteq B, A_j \subseteq A', B_k \subseteq B' \)

Example

Consider the query:
Find the names of employees other than J. Doe who worked on the CAD/CAM project for either one or two years.

```sql
SELECT Ename FROM Project p, Works w, Emp e
WHERE w.Eno=e.Eno
AND w.Pno=p.Pno
AND Ename<'J. Doe'
AND p.Name='CAD/CAM'
AND (Dur=12 OR Dur=24)
```

\[\Pi_{\text{ENAME}} \sigma_{\text{DUR}=12 \text{ OR } \text{DUR}=24} \sigma_{\text{PNAME}=\text{CAD/CAM'}} \sigma_{\text{ENAME}=\text{J. DOE'}} \]

7.36
Equivalent Query

\[\Pi_{\text{Ename}} \]
\[\sigma_{\text{Pname} = 'CAD/CAM' \land (\text{Dur} = 12 \lor \text{Dur} = 24) \land \text{Ename} <> 'J. DOE'} \]
\[\times \]

Works \quad Project \quad Emp

Another Equivalent Query

\[\Pi_{\text{Ename}} \]
\[\sigma_{\text{Pname} = 'CAD/CAM'} \]
\[\Pi_{\text{Pno}, \text{Ename}} \]
\[\sigma_{\text{Dur} = 12 \land \text{Dur} = 24} \]
\[\Pi_{\text{Pno}, \text{Eno}} \]
\[\sigma_{\text{Ename} <> 'J. Doe'} \]
\[\Pi_{\text{Eno}, \text{Ename}} \]

Project \quad Works \quad Emp
Search Strategy

- How to “move” in the search space.

 - Deterministic
 - Start from base relations and build plans by adding one relation at each step
 - Dynamic programming: breadth-first
 - Greedy: depth-first

 - Randomized
 - Search for optimalities around a particular starting point
 - Trade optimization time for execution time
 - Better when > 5-6 relations
 - Simulated annealing
 - Iterative improvement

Search Algorithms

- Restrict the search space
 - Use heuristics
 - E.g., Perform unary operations before binary operations
 - Restrict the shape of the join tree
 - Consider only linear trees, ignore bushy ones

![Linear Join Tree](image1)
![Bushy Join Tree](image2)
Search Strategies

- Deterministic

 ![Deterministic Diagram]

- Randomized

 ![Randomized Diagram]

Summary

- Declarative SQL queries need to be converted into low level execution plans
- These plans need to be optimized to find the “best” plan
- Optimization involves
 - Search space: identifies the alternative plans and alternative execution algorithms for algebra operators
 - This is done by means of transformation rules
 - Cost function: calculates the cost of executing each plan
 - CPU and I/O costs
 - Search algorithm: controls which alternative plans are investigated