
CS 448/648

1

System Structure Revisited
Naïve users Application

programmers
Casual users Database

administrator

Forms Application
Front ends DML Interface CLI DDL

Indexes System
Catalog

Data
files

DDL
Compiler

Disk Space Manager

Buffer Manager

File & Access Methods

Query Evaluation Engine

SQL Commands

R
ec

ov
er

y
M

an
ag

er

Transaction
&

Lock
Manager

DBMS

2

n Some DBMS component indicates it wants to read
record R

n File Manager
l Does security check
l Uses access structures to determine the page it is on
l Asks the buffer manager to find that page

n Buffer Manager
l Checks to see if the page is already in the buffer
l If so, gives the buffer address to the requestor
l If not, allocates a buffer frame
l Asks the Disk Manager to get the page

n Disk Manager
l Determines the physical address(es) of the page
l Asks the disk controller to get the appropriate block of data

from the physical address
n Disk controller instructs disk driver to do dirty job

Disk Access Process
(Overly Simplifed)

CS 448/648

3

Storage Hierarchy

Cache

Main
Memory

Virtual
Memory

File
System

Tertiary
Storage

Programs
DBMS

Capacity
vs

Cost &
Speed

Secondary Storage

Registers2-5 ns

3-10 ns

80-400 ns

5,000,000 ns

4

Disks

n Direct access storage devices (DASD)
l It is possible to access data directly as well as

sequentially
l Accessing data has a lower overhead than serial devices

(e.g., tapes)

n Types
l Fixed-head hard disks
l Removable hard disks
l Floppy disks

CS 448/648

5

Disk Drives

Platters

Sp
in

dl
e

read/write head

Arm

B
oo

m

6

Sector: the smallest addressable portion of a disk.

Tracks

Sector

Disk Organization

Gap

CS 448/648

7

Disk Packs
cylinders

tracks

8

n Disk Access Time = Seek time + Rotational delay +
transfer time

n Seek time: time to move access arm to correct cylinder
l T(seek) = S + Const ∗ N ,

where S = Initial time, N = # of cylinders moved

n Rotational delay: time to find correct place on track
l on average: half a revolution

n Transfer time: time to move data
l (# of bytes transferred)÷(# of bytes of track) ∗ rotation time

Cost of Disk Access

CS 448/648

9

Improving Access Time

n Organize data by cylinders
n Use multiple disks - use mirroring

l RAID

n More intelligent disk scheduling
l Elevator algorithm

n Prefetching and buffering

10

Buffer Management

n Goal: reduce the number of disk accesses
n Reside in RAM
n Buffer strategies

l multiple buffering
l buffer pooling

Program data area

Program data area
I/O Buffer

I/O Buffer

I/O Buffer

I/O Buffer

Disk

Disk

CS 448/648

11

Buffer Pool

Buffer
Manager

Database

Buffer Pool

Buffer frame

Read
Write

Read
Write

Buffer Manager:
• Maintain pin_count
• Maintain dirty bit

12

DBMS Structures & Files

DBMS Structures File Structures
Attribute Field
Tuple Record
Relation File

CS 448/648

13

Field Separation Alternatives

n Fixed length fields
l A given field (e.g., NAME) is the same size for all records
l Easy and fast reading but wastes space

320587 Joe Smith SC 95 3
184923 Kathy Lee EN 92 3
249793 Albert Chan SC 94 3

n Length indicator at the beginning of each field
l Also wastes space (at least 1 byte per field)
l You have to know the length before you store

63205879Joe Smith2SC29513
61849238Kathy Li2EN29213
624979311Albert Chan2SC29413

14

Field Separation Alternatives
n Separate fields with delimeters

l Use white space characters (blank, new line, tab)
l Easy to read, uses one byte per field, have to be careful in the choice of

the delimeter
320587	Joe Smith	SC	95	3
184923	Kathy Li	EN	92	3
249793	Albert Chan	SC	94	3

n Use keywords
l Each field has a keyword that indicates what the field is
l Self describing but high space overhead

ID=320587NAME=Joe SmithFACULTY=SCDEG=92YEAR=3
ID=184923NAME=Kathy LiFACULTY=ENDEG=92YEAR=3
ID= 249793NAME=Albert ChanFACULTY=SCDEG=94YEAR=3

CS 448/648

15

Record Organization Alternatives
n Fixed length records

l All records are the same length

320587 Joe Smith SC 95 3
184923 Kathy Lee EN 92 3
249793 Albert Chan SC 94 3

l The number and size of fields in each record may be variable

|320587|Joe Smith|SC|95|3| Padding
|184923|Kathy Li|EN|92|3| Padding
|249793|Albert Chan|SC|94|3| Padding

16

Record Organization Alternatives

n Variable Length Records
l Fixed number of fields

à Count the fields to detect the end of record

l Length field at the beginning
à Put the length of each record in front of it
à You have to buffer the record before writing

24320587|Joe Smith|SC|95|323184923|Kathy
Li|EN|92|326249793|Albert Chan|SC|94|3

CS 448/648

17

Record Organization Alternatives

n Variable Length Records (cont’d)
l Index the beginning

à Build a secondary index that shows where each record begins

320587|Joe Smith|SC|95|3184923|Kathy Li|EN|92|3249793|Albert …

00 24 47

l End-of-record markers
à Put a special end-of-record marker

18

Summary

…

File System

Header Record Record Record Record Record

…Field Field Field

consists of

…

File File File File File

consists of

consists of

CS 448/648

19

Accessing a File

n Sequential access
l Scan the file
l Useful when file is small or most (all) of the file needs

to be searched
l Complexity O(n) where n is the number of disk reads
l Block records to reduce n
l Block size should match physical disk organization

à multiples of sector size

n Direct access
l Based on relative record number (RRN)
l Record-based file systems can jump to the record

directly
l Stream-based systems calculate byte offset =

RRN * record length

20

Search Problem
Find a record with a given key value
n Sequential search: O(n)
n Binary search: O(log n)

l the file must be sorted
l how to maintain the sorting order?

à deleting, insertion

l variable length records
n Sorting

l RAM sort: read the whole file into RAM, sort it, and
then write it back to disk

l Keysort: read the keys into RAM, sort keys in RAM
and then rearrange records according to sorted keys

l Index

CS 448/648

21

Keysorting

320587 Joe Smith SC 95 3
184923 Kathy Lee EN 92 3
249793 Albert Chan SC 94 3

320587 1
184923 2
249793 3

Before sorting
RRN

320587 Joe Smith SC 95 3
184923 Kathy Lee EN 92 3
249793 Albert Chan SC 94 3

184923 2
249793 3
320587 1

After sorting

Problem: Now the physical file has to be rearranged

22

Indexing

n A tool used to find things
l book index, student record indexes
l A function from keys to addresses

n A record consisting of two fields
l key: on which the index is searched
l reference: location of data record associated with the key

n Advantages
l smaller size of the index file makes RAM index possible
l binary search from files of variable length records
l rearrange keys without moving records
l multiple indexes

à primary and secondary

CS 448/648

23

Types of Indexes

n Indexes on ordered vs unordered files
l Dense vs sparse indexes

n Primary indexes vs secondary indexes
n Single-level vs multi-level

l Single- level ones allow binary search on the index table
and access to the physical records/blocks directly from
the index table

l Multi- level ones are tree-structured and require a more
elaborate search algorithm

24

Single-Level Indexes on
Unordered Files

n The physical records are not ordered; the index
provides a physical order

n Physical files are called entry-sequenced since the
order of physical records is that of entry order.
l Append records to the physical file as they are inserted
l Build an index (primary and/or secondary) on this file
l Deletion/Update of physical records require

reorganization of the file and the reorganization of
primary index

CS 448/648

25

Primary Index on Unordered Files
St. Id. Name Major Yr.

10567

15973

96256

29579

11589

84920

34596

75623

J. Doe CS 3

M. Smith

P. Wright

B. Zimmer

T. Allen

S. Allen

T. Atkins

J. Wong

CS

ME

BS

BA

CS

ME

BA

3

2

1

2

4

4

3

10567
11589

15973
29579
34596

75623
84920
96256

26

Operations

n Record addition
l Append the record to the end; Insert a record to the

appropriate place in the index
l Requires reorganization of the index

n Record deletion
l Delete the physical record using any feasible technique
l Delete the index record and reorganize

n Record updates
l If key field is affected, treat as delete/add
l If key field is not affected, no problem.

CS 448/648

27

Primary Index on Ordered Files

n Physical records may be kept ordered on the
primary key

n The index is ordered but only one index record for
each block

n Reduces the index requirement, enabling binary
search over the values (without having to read all
of the file to perform binary search).

28

Primary Index on Ordered Files
10567 J. Doe CS 3

15973 M. Smith CS 3

11589 T. Allen BA 2

10567
29579

84920

29579 B. Zimmer BS 1

34596 T. Atkins ME 4

75623 J. Wong BA 3

84920 S. Allen CS 4

96256 P. Wright ME 2

CS 448/648

29

Secondary Index

n In addition to the primary index, establish indexes
on non-key attributes to facilitate faster access

n Also called inverted file index
n Secondary indexes typically point to primary

index
l Advantage:

à Record deletion and update causes less work

l Disadvantage:
à Less efficient

30

Clustering Index on Ordered Files

CS

BA

ME

34596 T. Atkins ME 4

10567 J. Doe CS 3

15973 M. Smith CS 3

84920 S. Allen CS 4

96256 P. Wright ME 2

BS

75623 J. Wong BA 3

11589 T. Allen BA 2

29579 B. Zimmer BS 1

34596 T. Atkins ME 4

CS 448/648

31

Secondary Index
St. Id. Name Major Yr.

10567

15973

96256

29579

11589

84920

34596

75623

J. Doe CS 3

M. Smith

P. Wright

B. Zimmer

T. Allen

S. Allen

T. Atkins

J. Wong

CS

ME

BS

BA

CS

ME

BA

3

2

1

2

4

4

3

10567

11589

15973

29579

34596

75623

84920
96256

CS

BA

ME

BS

3

1

4

2

32

Problems With Inverted Files

¶ Inverted file indexes cannot be maintained in main
memory as the database sizes and number of
keywords increase.

· Binary search over indexes that are stored in
secondary storage is expensive.
l Too many seeks and I/Os.

¸ Maintaining the indexes in sorted key order is
difficult and expensive.

CS 448/648

33

B-Trees

n A B-tree of order m is a paged multi-way search tree such
that

l Each page contains a maximum of m-1 keys
l Each page, except the root, contains at least

l Root has at least 2 descedants unless it is the only node
l A non-leaf page with k keys has k+1 descendants
l All the leaves appear at the same level

n Build the tree bottom-up to maintain balance
l Split & promotion for overflow during insertion
l Redistribution & concatenation for underflow during deletion

 keys 1
2

 −



m

34

B-Tree Structure

P1 P2 P3 P4K1 K2 K3D1 D2 D3

-1 -1 -1 -1

tree
pointer

data
pointer

Ki Kj Kr
leaf
node

K2<X<K3

X

CS 448/648

35

B-Tree Properties
Given a B-tree of order m
n Root page

l 1 ≤ keys ≤ m − 1
l 2 ≤ descendents ≤ m

n Other pages
l

l

l K1 < K1 < … < Km-1

n Leaf pages
l all at the same level; tree pointers are null

m
2 −1≤ keys ≤ m −1
m
2 ≤ descendents ≤ m

36

Operations

n Insertion
l Insert the key into an appropriate leaf page (by

search)
l When overflow: split and promotion

àSplit the overflow page into two pages
àPromote a key to a parent page

l If the promotion in the previous step causes
additional overflow, then repeat the split-
promotion

CS 448/648

37

Insertion Example

(c) Insert A

(d) Insert M (e) Insert P, I, B, W

C D S

(a)

0

2
S

C D TA

2

0 1

D

C IA T

S

B M WP

2

0 3 1

Promotion from left

C D T

0 1

S

S

(b) Insert T

T
M

C MA T

0 3 1

D

D
2

S

38

Insertion Example

(f) Insert N

(g) Insert G, U, R

D

I P

N

CA B M T W

S

0 3 4 1

2

D

G P

N

CA B I RM T U W

S

0 3 4 1

2

CS 448/648

39

Insertion Example

(g) Insert K

D

G P

N

CA B I RM T U W

S

0 3 4 1

2

K

G MCA B I K

0 3 5

P R T U W

4 1

D N S
2

?

40

Insertion Example

(g) Insert K

0

S

G MCB I K

3 5

P R T U W

4 1

D N
2 6

S

A

S

CS 448/648

41

Insertion Example

(h) Insert K

MCA B G I P R T U W

D S

K

0 3 5 4

2

1

6

7

N

N

K

42

Insertion Example

N

(h) Insert E

MCA B E G I P R T U W

D SK

0 3 5 4

2

1

6

7

CS 448/648

43

Operations
n Search

l Recursively traverse the tree
l What is the search performance?

à What is the depth of the B-tree?
l B-tree of order m with N keys and depth d

à Best case: maximum number of descendents at each node
N = md

à Worst case: minimal number of descendents at each node

n Theorem N = 2 ×
m
2


 


 

d −1

logm(N +1) ≤ d ≤ log m
2


 


 
(
N +1

2
) +1

44

Operations

n Deletions
l Search B-tree to find the key to be deleted
l Swap the key with its immediate successor, if the key is

not in a leaf page
à Note only keys in a leaf may be deleted

l When underflow: redistribution or concatenation
l Redistribute keys among an adjacent sibling page, the parent

page, and the underflow page if possible (need a rich sibling)
l Otherwise, concatenate with an adjacent page, demoting a key

from the parent page to the newly formed page.

l If the demotion causes underflow, repeat
redistribution-concatenation

CS 448/648

45

Deletion Example – Simple

3 4 5 6

1

7

2

0

H

M

D

CA FE JI K

Q U

N O P R S V W X Y Z

8

(a) Delete J

46

Deletion Example – Exchange

3 4 5 6

1

7

2

0

H

M

D

CA FE I K

Q U

O P R S V W X Y Z

8

(a) Delete M

MN

N

CS 448/648

47

Deletion Example – Redistribution

(a) Delete R

3 4 5 6

1

7

2

0

H

N

D

CA FE I K

Q U

O P R S V W X Y Z

8

U

W
V

V

48

Deletion Example – Concatenation

3 4 5 6

1

7

2

0

H

N

D

CA FE I K

Q

O P S X Y Z

8

U V

W

(a) Delete A
C FED

CS 448/648

49

Deletion Example – Propagation

(a) Delete A (continued)

3 5 6

1

7

2

0

N

H

CA FE I K

Q

O P S X Y Z

8

U V

W

C FED

50

Deletion Example – Propagation

3 5 6

1

7

H

CA

FE I K

Q

O P S X Y Z

8

(a) Delete A (final form)

U V

W

C FED

N Q W

CS 448/648

51

Improvements

n Redistribution during insertion
l A way of avoiding, or at least, postponing the creation of a new

page by redistributing overflow keys into its sibling pages
l Improve space utilization: 67% → 86%

n B*-trees
l If redistribution takes placed during insertion, at time of overflow,

at least one other sibling is full
l Two-to-three split

à Distribute all keys in two full pages into three sibling pages evenly

l Each page contains at least

l Special handling of the root

keys
3

12




 −m

52

Improvements

n Virtual B-trees
l B-trees that uses RAM page buffers
l Buffer strategies

à Keep the root page
à Retain the pages of higher levels

à LRU (the Least Recently Uses page in the buffer is replaced
by a new page)

CS 448/648

53

n Primary problem:
l Efficient sequential access and indexed search

(dual mode applications)
n Possible solutions:

l Sorted files:
à good for sequential accesses
à unacceptable performance for random access
à maintenance costs too high

l B-trees:
à good for indexed search
à very slow for sequential accesses (tree traversal)
à maintenance costs low

l B+ trees: a file with a B-tree structure + a sequence set

Indexed Sequential Access

54

n Arrange the file into blocks
l Usually clusters or pages

n Records within blocks are sorted
n Blocks are logically ordered

l Using a linked list

n If each block contains b records,
then sequential access can be
performed in N/b disk accesses

1 D, E, F, G 4
2 A, B, C 1
3 J, K, L, M, N -1
4 H, I 3

head = 2

Sequence Sets

CS 448/648

55

n Changes to blocks
l Goal: keep blocks at least half full

à Accommodates variable length records

file updates problems solutions

insertion overflow split w/o pro motion

deletion underflow redistribution
concatenation

Maintenance of Sequence Sets

nChoice of block size
lThe bigger the better
lRestricted by size of RAM, buffer, access speed, track and sector
sizes

56

n Keys of last record in each block
l Similar to what you find on dictionary pages
l Creates a one- level index
l Has to be able to fit memory

à binary search
à index maintenance

n Separator: a shortest string that separates keys in
two consecutive blocks
l Increases the size of the index that can be maintained

in memory

Indexed Access to Sequence Sets

CS 448/648

57

n Updates are first made to the sequence set and then
changes to the index set are made if necessary
l If blocks are split, add a new separator
l If blocks are concatenated, remove a separator
l If records in the sequence set are redistributed, change the

value of the separator

Maintenance of B+ Trees

58

B+-Tree Structure

P1 P2 P3 P4K1 K2 K3

-1 -1 -1 -1

tree
pointer

Ki Kj Kr
sibling
node
ptr

K2<X<K3

X

CS 448/648

59

Differences Between
B-tree and B+ Tree

n Node information content
l In B-trees all the pages contains the keys and

information (or a pointer to it)
l In the B+ tree, the keys and information are contained in

the sequence set

n Tree structure
l B+ tree is usually shallower than a B-tree (Why?)

n Access speed
l Ordered sequential access is faster in B+ trees

60

n Primary problem:
l Direct Access: how to accomplish index access in one

seek
n Three major modes of file access

l Sequential access
l Index search: B-trees

à Index function: (Key → address)
F non-computable function defined by a table
F one-to-one and on-to function

l Direct access: Hashing
à Address obtained directly from key

F computable index function (Key → address)
F record can be found in O(1) seeks on average (independent of file

size)

Hashing

CS 448/648

61

n Input: a field of a record; usually its key K
(student id, name, …)

n Compute hash (index) function H(K)
H(K): K → A

to find the address of the record.
H(K) is the address of the record with key K

Hash Function

62

Types of Hashing

n What does H(K) point to:
l Internal hashing

à Organize the entire file as a hash file
à H(K) gives the home address of the record

l External hashing
à The file is on disk and the hashing is done to the file header
à H(K) gives the bucket address from which the block address can be

found using file header information.

n Organization of the file:
l Static hashing

à File size is fixed
l Dynamic & extendible hashing

à File size can grow

CS 448/648

63

Internal Hashing

…
…

r
re

co
rd

s

N
re

co
rd

 s
lo

ts

H(K)

Key

64

External Hashing

…

Block address
on disk

0
1
2
3

N-1

H(K)

K

This is equivalent to scatter tables + buckets
where the bucket number/block address mapping is maintained
in file header

CS 448/648

65

Dynamic Files & Hashing

n Problem with hashing is that the address space (N)
is fixed.
l Overflow results

n How to handle dynamic files better?
l Dynamic hashing
l Extendible hashing
l Linear hashing

66

Extendible Hashing

n Binary search tree B-tree
l dynamically self-adjusted balanced page tree

n Hashing: computable index function
l problem: linear search for overflowed records
l Solution: bucket size

What if we have an unlimited bucket size ?

What if we use a dynamic, self-adjusted structure with
unlimited bucket size?

CS 448/648

67

Extendible Hashing

A

B

C directory bucket

00

10

11

B

C

n Basic Idea:
l Build an index based on the binary number representation of the

hash value
l Use minimal set of binary digits; use more as more is needed

n Example:
l Assume each hashed key is a sequence of three digits, and in the

beginning, we need only three buckets.
l Usually, 8 buckets are needed for the set of all keys with three

digits.

01
A1

2

2

68

Example (cont’d)

n When A overflows, create
a new bucket D to insert
new records, and
expanding the address of
A into two addresses

n If, instead, B overflows,
then create a new bucket
D and expand the address
of B into three digits

000

100

110

101

00

10

11

01

B

A2

C2

2

D2

001
010
011

111

A1

B3

C2

D3

CS 448/648

69

Deletions

n Find buddy buckets to collapse
n Two buckets are buddies if

l They are at the same depth
l Their initial bit strings are the same

n This is similar to finding siblings in B-trees

70

Access performance

n One seek if the directory can be kept in RAM
n Two seeks, otherwise
n Space utilization:

l Average utilization is 69%
à compared with 67% for simple B-trees which can be optimized

to have utilization of 85%

l Variations in space utilization are periodic
à Go over 90% and then drop to 50%

CS 448/648

71

Dynamic Hashing
n Very similar to extendible hashing
n Starts with a fixed address size (similar to static

hashing) and then grows as needed
n Slow and incremental growth of the directory

(extendible hashing doubles it when it grows)
n The node structure takes up more space (because

of the maintenance of tree structure)
n Usually two hash functions

l First try to see if the bucket is in the original address
space

l If not, try the second hash function to guide the search
through the trie

72

Dynamic Hashing Example
1 2 3 4

1 3 4

410 411

2

20 21 40

Original
address
space

1 2 4

40 41

3

CS 448/648

73

Linear Hashing
n Allows a hash file to expand and shrink dynamically

without needing a directory
n Starts with b buckets and uses one hash function:

Hd(K) = K mod b
to find the bucket (d is the number of bits needed to
identify b buckets).

n When a bucket, say bi, fills, splits the next bucket, say bj,
in sequence to be split (not bi) and moves half the records
of bj to the new bucket Bj using the hash function Hd+1(K).

n Search (p is the pointer to the address of the next bucket to
be split and extended):

if Hd(K) >= p address:= Hd(K)
else address:= Hd+1(K)

74

Linear Hashing Example

00 01 10 11

a b c d
000 01 10 11

a b c d A

w

100

000 001 10 11

a b c d A

x

100

B
101 000 001 010 11

a b c d A

x

100

B
101

y

C
110

000 001 010 011

a b c d A

z

100

B
101

y

C
110

D
111

CS 448/648

75

Hashing vs B+ Trees

n Times for exact search/update
l Hashing can have O(1) or O(N) performance
l B+-trees have O(logN) performance

n Space
l Hash tables depend on load factor (controllable in linear

hashing)
l B+-trees use 65%-85% of space

n Range querying
l Supported by B+-trees, but not by hashing

76

Design Process - Physical Design
Conceptual

Design

Conceptual Schema
(ER Model)

Logical
Design

Logical Schema
(Relational Model)

Physical
Design

Physical Schema

CS 448/648

77

Physical Design

n Choice of indexes
n Clustering of data
n May have to revisit and refine the conceptual and

external schemas to meet performance goals.
n Most important is to understand the workload

l The most important queries and their frequency.
l The most important updates and their frequency.
l The desired performance for these queries and updates.

78

Workload Modeling

n For each query in the workload:
l Which relations does it access?
l Which attributes are retrieved?
l Which attributes are involved in selection/join

conditions? How selective are these conditions likely
to be?

n For each update in the workload:
l Which attributes are involved in selection/join

conditions? How selective are these conditions likely
to be?

l The type of update (INSERT/DELETE/UPDATE), and
the attributes that are affected.

CS 448/648

79

Physical Design Decisions

n What indexes should be created?
l Relations to index
l Field(s) to be used as the search key
l Perhaps multiple indexes?
l For each index, what kind of an index should it be?

à Clustered? Hash/tree? Dynamic/static? Dense/sparse?

n Should changes be made to the conceptual schema?
l Alternative normalized schemas
l Denormalization
l Partitioning (vertical & horizontal)
l New view definitions

n Should the frequently executed queries be rewritten to run
faster?

80

Choice of Indexes

n Consider the most important queries one-by-one
l Consider the best plan using the current indexes
l See if a better plan is possible with an additional index
l If so, create it.

n Consider the impact on updates in the workload
l Indexes can make queries go faster,
l Updates are slower
l Indexes require disk space, too.

CS 448/648

81

Index Selection Guidelines

n Don’t index unless it contributes to performance.
n Attributes mentioned in a WHERE clause are candidates

for index search keys.
l Exact match condition suggests hash index.
l Range query suggests tree index.

à Clustering is especially useful for range queries, although it can help
on equality queries as well in the presence of duplicates.

n Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.

l If range selections are involved, order of attributes should be
carefully chosen to match the range ordering.

l Such indexes can sometimes enable index-only strategies for
important queries.

à For index-only strategies, clustering is not important!

82

Index Selection Guidelines
(cont’d.)

n Try to choose indexes that benefit as many queries
as possible. Since only one index can be clustered
per relation, choose it based on important queries
that would benefit the most from clustering.

CS 448/648

83

Example

n Consider the query
SELECT A,B
FROM R
WHERE A>5 AND C=‘Waterloo’

n Assume no index
l Sequentially scan relation R to check each tuple for

A>5 and C=‘Waterloo’
l Qualifying tuples are projected over attributes A and B.

84

Example (cont’d)

n Consider the query
SELECT A,B
FROM R
WHERE A>5 AND C=‘Waterloo’

n Assume index on A, B, C
l Search index on A to find records where A>5
l Retrieve these records
l If C=‘Waterloo’ then project over A, B
l Should you do the index search on A or C?

à More selective one

CS 448/648

85

Example (cont’d)

n Consider the update query
UPDATE R
SET A TO 3
WHERE C=‘Waterloo’

n Assume you have index on A, C
l Search the index on C to find C=‘Waterloo’
l For each such record, update A in the record
l For each such record, update A index

