Design Process - Where are we?

- Conceptual Design
 - Conceptual Schema (ER Model)
 - Step 1: ER-to-Relational Mapping
 - Logical Design
 - Logical Schema (Relational Model)
 - Step 2: Normalization: “Improving” the design

Relational Design Principles

- Relations should have semantic unity
- Information repetition should be avoided
 - Anomalies: insertion, deletion, modification
- Avoid null values as much as possible
 - Difficulties with interpretation
 - don’t know, don’t care, known but unavailable, does not apply
 - Specification of joins
- Avoid spurious joins
Information Repetition

- The TITLE, SALARY, BUDGET attribute values are repeated for each project that the engineer is involved in.
 - Waste of space
 - Complicates updates

This example instance of EMP-PROJ relation violates one of the constraints in our earlier design. Which one?
Insertion Anomaly

- It is difficult (impossible?) to store information about a new project until an employee is assigned to it. Why?

Deletion Anomaly

- If an engineer, who is the only employee on a project, leaves the company, his personal information cannot be deleted, or the information about that project is lost.
- May have to delete many tuples.
Modification Anomaly

- If any attribute of project (say BUDGET of P1) is modified, all the tuples for all employees who work on that project need to be modified.

<table>
<thead>
<tr>
<th>EMP</th>
<th>ENAME</th>
<th>TITLE</th>
<th>SALARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>J. Doe</td>
<td>Elect. Eng.</td>
<td>40000</td>
</tr>
<tr>
<td>E2</td>
<td>M. Smith</td>
<td>Analyst</td>
<td>34000</td>
</tr>
<tr>
<td>E3</td>
<td>A. Lee</td>
<td>Mech. Eng.</td>
<td>27000</td>
</tr>
<tr>
<td>E4</td>
<td>J. Miller</td>
<td>Programmer</td>
<td>24000</td>
</tr>
<tr>
<td>E5</td>
<td>B. Casey</td>
<td>Syst. Anal.</td>
<td>34000</td>
</tr>
<tr>
<td>E6</td>
<td>L. Chu</td>
<td>Elect. Eng.</td>
<td>40000</td>
</tr>
<tr>
<td>E7</td>
<td>R. Davis</td>
<td>Mech. Eng.</td>
<td>27000</td>
</tr>
<tr>
<td>E8</td>
<td>J. Jones</td>
<td>Syst. Anal.</td>
<td>34000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROJ</th>
<th>PNO</th>
<th>PNAME</th>
<th>BUDGET</th>
<th>DURATION</th>
<th>RESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>E1</td>
<td>Instrumentation</td>
<td>150000</td>
<td>12</td>
<td>Manager</td>
</tr>
<tr>
<td>P2</td>
<td>E1</td>
<td>Database Develop.</td>
<td>135000</td>
<td>6</td>
<td>Analyst</td>
</tr>
<tr>
<td>P3</td>
<td>E5</td>
<td>CAD/CAM</td>
<td>250000</td>
<td>10</td>
<td>Consultant</td>
</tr>
<tr>
<td>P4</td>
<td>E6</td>
<td>Maintenance</td>
<td>310000</td>
<td>48</td>
<td>Engineer</td>
</tr>
<tr>
<td>P5</td>
<td>E5</td>
<td>Database Develop.</td>
<td>350000</td>
<td>18</td>
<td>Programmer</td>
</tr>
<tr>
<td>P6</td>
<td>E5</td>
<td>Database Develop.</td>
<td>350000</td>
<td>24</td>
<td>Manager</td>
</tr>
<tr>
<td>P7</td>
<td>E6</td>
<td>Maintenance</td>
<td>310000</td>
<td>48</td>
<td>Manager</td>
</tr>
<tr>
<td>P8</td>
<td>E8</td>
<td>CAD/CAM</td>
<td>250000</td>
<td>40</td>
<td>Manager</td>
</tr>
</tbody>
</table>

What to do?

- Take each relation individually and “improve” it in terms of the desired characteristics
 - Normal forms
 - Atomic values (1NF)
 - Can be defined according to keys and dependencies.
 - Functional Dependencies (2NF, 3NF, BCNF)
 - Multivalued dependencies (4NF)
 - Normalization
 - Normalization is a process of concept separation which applies a top-down methodology for producing a schema by subsequent refinements and decompositions.
 - Do not combine unrelated sets of facts in one table; each relation should contain an independent set of facts.
 - Universal relation assumption
 - 1NF to 3NF; 1NF to BCNF
Normalization Issues

- How do we decompose a schema into a desirable normal form?
- What criteria should the decomposed schemas follow in order to preserve the semantics of the original schema?
 - Reconstructability: recover the original relation ⇒ no spurious joins
 - Lossless decomposition: no information loss
 - Dependency preservation: the constraints (i.e., dependencies) that hold on the original relation should be enforceable by means of the constraints (i.e., dependencies) defined on the decomposed relations.
- What happens to queries?
 - Processing time may increase due to joins
 - Denormalization

Normal Forms
Functional Dependence

- Given relation R defined over $U = \{A_1, A_2, ..., A_n\}$ where $X \subseteq U$, $Y \subseteq U$. If, for all pairs of tuples t_1 and t_2 in any legal instance of relation scheme R,

$$t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y],$$

then the functional dependency $X \rightarrow Y$ holds in R.

- Example
 - In relation EMP-PROJ
 - $(ENO, PNO) \rightarrow (ENAME, TITLE, SALARY, DURATION, RESP)$
 - $ENO \rightarrow (ENAME, TITLE, SALARY)$
 - $PNO \rightarrow (PNAME, BUDGET)$
 - $TITLE \rightarrow SALARY$

Some Basics

- Superkey
 - A set of one or more attributes, which, taken collectively, allow us to identify uniquely a tuple in a relation.
 - Let R be a relation scheme. A subset K of R is a superkey of R if, in any legal relation [instance] r of R, for all pairs t_1 and t_2 of tuples in r such that $t_1[K] = t_2[K] \Rightarrow t_1 = t_2$.

- Candidate key
 - A superkey for which no proper subset is a superkey.

- Primary key
 - The candidate key that is chosen by the database designer as the principle key.
Some Basics

- Attributes
 - Prime attribute is a member of any key
 - Non-prime attribute is any attribute which is not prime

- Full functional dependency
 - A FD $X \rightarrow Y$ is a full functional dependency if X is minimal, i.e., removal of any attribute A from X means the dependency does not hold anymore.
 - Formally - $X \rightarrow Y$ iff for all $A \in X$, $(X - \{A\}) \nrightarrow Y$.

- Partial functional dependency
 - Formally - $X \rightarrow Y$ iff for some $A \in X$, $(X - \{A\}) \nrightarrow Y$.

- Transitive dependency
 - Formally - $X \rightarrow Y$ and $Y \rightarrow Z$ and $X \rightarrow Z$ and $Y \nrightarrow X$ and $Z \nsubseteq Y$

Normal Forms Based on FDs

1NF eliminates the relations within relations or relations as attributes of tuples.

- First Normal Form (1NF)
 - Eliminate the partial functional dependencies of non-prime attributes to key attributes

- Second Normal Form (2NF)
 - Eliminate the transitive functional dependencies of non-prime attributes to key attributes

- Third Normal Form (3NF)
 - Eliminate the partial and transitive functional dependencies of prime (key) attributes to key.

- Boyce-Codd Normal Form (BCNF)
First Normal Form

- All attribute values are atomic
- 1NF relation cannot have an attribute value that is:
 - a set of values (set-value)
 - a tuple of values (nested relation)
- This is a standard assumption in relational DBMSs and in the rest of this section
- In object-oriented DBMSs this assumption is relaxed.

Second Normal Form

- Two possible definitions:
 - A relation \(R \) ∈ 2NF iff all non-prime attributes in \(R \) are fully functionally dependent on primary key.
 - A relation \(R \) ∈ 2NF iff the attributes are either
 - a candidate key, or
 - fully dependent on every key.
- Partial functional dependencies cause problems.
- 2NF is only of historical importance, since it is subsumed by 3NF.
- In the example, EMP-PROJ is not 2NF, we turn it into 2NF by decomposing it:
 - EMP(ENO, ENAME, TITLE, SALARY)
 - PROJ(PNO, PNAME, BUDGET, MGR)
 - ASSIGN(ENO, PNO, DURATION, RESP)
Third Normal Form

- Intuitively: A relation $R \in 3NF$ iff
 - $R \in 2NF$ (i.e., every non-prime attribute is fully functionally dependent on every key)
 - No non-prime attribute of R is transitively dependent on the primary key.
- The issues is to remove the transitive dependencies

Third Normal Form

- Formally: A relation scheme R defined over $U = \{A_1, A_2, \ldots, A_n\}$ is in 3NF if for all functional dependencies that hold on R of the form $X \rightarrow Y$, where $X \subseteq U$ and $X \subseteq U$, at least one of the following holds:
 - $X \rightarrow Y$ is a trivial functional dependency (i.e., $Y \subseteq X$)
 - X is a superkey for R
 - Y is contained in a candidate key for R (Y is a set of prime attributes)
- The first two conditions deal with transitive dependencies.
3NF – Example

EMP is not in 3NF because of fd_
- TITLE → SALARY but TITLE is not a superkey and
 SALARY is not prime
- Problem is that ENO transitively determines SALARY
 (as well as directly determining it)

Solution:

<table>
<thead>
<tr>
<th>EMP</th>
<th>ENO</th>
<th>ENAME</th>
<th>TITLE</th>
<th>SALARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>fd_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>fd_2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Boyce-Codd Normal Form

- You can still have transitive dependencies in 3NF if the dependent attribute(s) are prime.
- A 1NF relation scheme R is in BCNF if for every non-trivial functional dependency $X \rightarrow Y$, X is a superkey.
- Properties of BCNF
 - All non-prime attributes are fully dependent on every key.
 - All prime attributes are fully dependent on the keys that they do not belong to.
 - No attribute is non-trivially dependent on any set of non-prime attributes.
Boyce-Codd Normal Form

Formally: A relation scheme R defined over $U = \{A_1, A_2, \ldots, A_n\}$ is in BCNF if for all functional dependencies that hold on R of the form $X \rightarrow A$, where $X \subseteq U$ and $A \subseteq U$, at least one of the following holds:
- $X \rightarrow A$ is a trivial functional dependency
- X is a superkey for R
- No transitive dependencies.

BCNF – Example

Assume the following definition of the PROJECT relation with:
- Each employee on a project has a unique location and responsibility with respect to that project, and
- Only one project can be found at each location

FDs would be

```
      PROJECT
       |      |     |     |
      ---|-----|-----|-----|
   PJNO| ENO | LOCATION | RESP |
```

which makes PROJECT in 3NF but not in BCNF
Inferencing over FDs

- We would like to be able to infer from a given set of FDs F all implied FDs F^+, which is called the closure of F.
- Important because the 3NF and BCNF definitions refer to “all functional dependencies”.
- Example:

 $\text{ENO} \rightarrow (\text{ENAME}, \text{TITLE}, \text{SALARY}, \text{APT#}, \text{STREET}, \text{CITY})$

 $\Rightarrow (\text{ENO} \rightarrow \text{ENAME})$

- This requires a set of inference rules
 - Armstrong’s axioms
 - Additional rules

Inference Rules

- Let X, Y and Z be sets of attributes in relation scheme R
- Armstrong’s axioms:
 - Augmentation: $\{X \rightarrow Y\} \Rightarrow \{XZ \rightarrow YZ\}$
 - Transitivity: $\{X \rightarrow Y, Y \rightarrow Z\} \Rightarrow \{X \rightarrow Z\}$
 - Reflexivity: $W \subseteq X \Rightarrow \{X \rightarrow W\}$
- These rules are
 - Sound: do not generate any incorrect FDs – anything derived from F is in F^+
 - Complete: given F as a set of FDs, they permit us to find all of F^+
- Additional Rules:
 - Union: $\{X \rightarrow Y, X \rightarrow Z\} \Rightarrow (X \rightarrow YZ)$
 - Decomposition: $\{X \rightarrow YZ\} \Rightarrow \{X \rightarrow Y, X \rightarrow Z\}$
 - Pseudotransitivity: $\{X \rightarrow Y, WY \rightarrow Z\} \Rightarrow \{XW \rightarrow Z\}$
Why These Rules?

- **Lossless join decomposition:**
 - If R is decomposed into R_1, \ldots, R_n, it should be possible to reconstruct R with no additional (spurious) tuples.
 - If a relation scheme R is decomposed into R_1 and R_2, then at least one of the following FDs should be in F^+
 - $R_1 \cap R_2 \rightarrow R_1$
 - $R_1 \cap R_2 \rightarrow R_2$

- **Dependency preservation:**
 - If a relation scheme R is decomposed into R_1 and R_2, then every FD in F that holds on relation R (even the implied ones) should be guaranteed to hold whenever the projected dependencies within relations R_1 and R_2 are enforced.

Closure of a Set of FDs

- This is most easily done by converting it to the problem of computing the closure of a set of attributes.
- For each FD defined on the base relations, pick the attribute (or set of attributes) that appear on its left-hand-side
 - Find their closure which gives the set of attributes that are dependent on that attribute
 - Theorem 1: $X \rightarrow Y \in F^+$ iff $Y \subseteq \text{Compute}X^+(X, F)$.
 - Theorem 2: X is a superkey of R iff $\text{Compute}X^+(X, F) = R$.
 - This also gives the set of FDs that can be inferred from the original FD.
Closure of a Set of Attributes

\[\text{function } \text{Compute} X^+(X, F) \]
\[\text{begin} \]
\[X^+ \leftarrow X \]
\[\text{while } \text{there exists } Y \rightarrow Z \in F \text{ such that} \]
\[Y \subseteq X^+ \text{ and } Z \not\subseteq X^+ \]
\[\text{then } X^+ \leftarrow X^+ \cup Z \]
\[\text{return}(X^+) \]
\[\text{end} \]

Attribute Closure Example

- Let \(F \) consist of
 - \(A \rightarrow B \)
 - \(C \rightarrow D, E \)
 - \(E, G \rightarrow H \)

- \(\text{Compute} X^+ \{\{C, G\}, F\} \)
 - Initial: \(X^+ = \{C, G\} \)
 - Iteration 1 (\(C \rightarrow D, E \)): \(X^+ = \{C, G, D, E\} \)
 - Iteration 2 (\(E, G \rightarrow H \)): \(X^+ = \{C, G, D, E, H\} \)
Input: Relation $R \leftarrow U, F$ /* U={attributes}, F={FDs} */
Output: Decomposition D for R

Step 1. $D \leftarrow \{R\}$; /* We are talking about attributes of R*/

Step 2. While there is a relation schema $Q \in D$ that is not in BCNF do

- if $X \rightarrow Y$ is the FD causing violation
 - then $D \leftarrow (D - Q) \cup (Q - Y) \cup (X \cup Y)$

BCNF Decomposition Example

- Consider the relation and F
 - EMP(ENO, ENAME, TITLE, PNO, PNAME, RESP)
 - $F = \{ENO \rightarrow ENAME, TITLE, PNO \rightarrow PNAME, ENO, PNO \rightarrow RESP\}$

- EMP is not in BCNF, because ENO and PNO are individually not superkeys. Thus,
 - $ENO \rightarrow ENAME, TITLE$
 - $PNO \rightarrow PNAME$

both cause violation of BCNF.
BCNF Decomposition Example

We start with \(D = \{ \text{ENO, ENAME, TITLE, PNO, PNAME, RESP} \} \)

Iteration 1
- Pick one of the FDs that violate BNCF
 - \(\text{ENO} \rightarrow \text{ENAME, TITLE} \)

\(D = \{ R_1, R_2 \} \) where
- \(R_1(\text{ENO, PNO, PNAME, RESP}) \)
- \(R_2(\text{ENO, ENAME, TITLE}) \)

\(R_2 \) is in BCNF, but \(R_1 \) is not

BCNF Decomposition Example

Iteration 2
- \(D \) has \(R_1 \) which is not in BCNF
- Pick one of the FDs that violate BNCF
 - \(\text{PNO} \rightarrow \text{PNAME} \)

\(D = \{ R_2, R_3, R_4 \} \) where
- \(R_3(\text{ENO, PNO, RESP}) \)
- \(R_4(\text{PNO, PNAME}) \)

Both relations are in BCNF

Therefore, replace EMP with \(R_2, R_3, R_4 \)
Complexity of Normalization

Assume we are given a set of attributes A and a set of FDs F, and let $n = \text{the size of this input (at most } O(|A|*|F|))$.

- The number of dependencies in F^+ may be exponential in n.
- A^+ can be found in linear time.
- Testing whether $X \rightarrow Y$ is in F^+ can be done in linear time.
- Testing whether a decomposition is lossless can be done in linear time.
- Testing whether a decomposition is dependency preserving can be done in polynomial time.
- Testing whether a relation scheme is in BCNF is NP-complete.
- There is a quadratic algorithm to find a set of relations over attributes A where
 - Each is in 3NF
 - The set preserves all dependencies in F, and
 - The set correspond to a lossless decomposition of the universal relation covering all of A.

5-33