
4-1

SQL
� Structured Query Language
� Declarative

� Specify the properties that should hold in the result, not
how to obtain the result

� Complex queries have procedural elements
� International Standard

� SQL1 (1986)
� SQL2 (SQL-92)
� SQL3 (pieces have started to appear; also known as

SQL-99)
� Two components

� DDL statements
� DML statements

4-2

SQL DDL Statements

� Create schema
CREATE SCHEMA Schema_Name AUTHORIZATION User_Name

� Create table
� Specify a new relation scheme
� General form

CREATE TABLE <Table_Name>

(Attribute_1 <Type>[DEFAULT <value>][<Null constraint>],

Attribute_2 <Type>[DEFAULT <value>][<Null constraint>],

…

Attribute_n <Type>[DEFAULT <value>][<Null constraint>],

[<Constraints>])

4-3

Example

� Design
Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

� Definition of Project
CREATE TABLE Project
(Pno CHAR(3),
Pname VARCHAR(20),
Budget DECIMAL(10,2)DEFAULT 0.00
City CHAR(9));

� Assume others are defined similarly.

4-4

Allowable Data Types
� Numeric

� INT, SHORTINT
� REAL (FLOAT), DOUBLE PRECISION
� DECIMAL(i,j)

� Character-string
� CHAR(n), VARCHAR(n)

� Bit-string
� BIT(n), BIT VARYING(n)

� Date
� YYYY-MM-DD

� Time
� HH:MM:SS

� Timestamp
� both DATE and TIME fields plus a minimum of six positions for

fractions of seconds

4-5

User-Defined Types

� Create a DOMAIN
CREATE DOMAIN <domain_name> AS
<primitive_type>

� Example
CREATE DOMAIN Gender AS CHAR(1)

� Generally useful only for easy modification of
type specification.

� The value can be defaulted by the DEFAULT
specification

4-6

� Not null
� Specifies that an attribute cannot contain null values

� Unique
� Specifies that an attribute cannot contain duplicates

� Primary key
� Designates a set of columns as the table’s primary key
� Implies UNIQUE and NOT NULL

� Foreign key
� Designates a set of columns as the foreign key in a

referential constraint

Attribute Constraints

4-7

Example

� Given
Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

� Enhance the previous definition of Project:
CREATE TABLE Project
(Pno CHAR(3),
Pname VARCHAR(20),
Budget DECIMAL(10,2)DEFAULT 0.00
City CHAR(9));
PRIMARY KEY (PNO));

4-8

� REFERENTIALLY TRIGGERED ACTION
� Referential integrity: A key of one relation appears as an attribute

(foreign key) of another relation.
� Example:

Emp (Eno, Ename, Title, City)
Pay(Title, Salary)

� Deletion or update of primary key tuple requires action on the
foreign key tuple. Specify constraint on delete or update.

� How to manage?
➠ reject
➠ cascade: (on delete) automatically remove foreign keys if a

referenced key is removed or (on update) change the foreign key
value to the new value of the referenced key

➠ set null
➠ set default

Referential Constraints

4-9

Example

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Works(Eno, Pno, Resp, Dur)
� Definition of deposit

CREATE TABLE Works

(Eno CHAR(3),
Pno CHAR(3),
Resp CHAR(15),

Dur INT,

PRIMARY KEY (Eno,Pno),

FOREIGN KEY (Eno) REFERENCES Emp(Eno)

ON DELETE SET NULL

ON UPDATE CASCADE,

FOREIGN KEY (Pno) REFERENCES Project(Pno));

4-10

Other SQL DDL Commands

� DROP SCHEMA
� Delete an entire schema
� CASCADE: delete all the tables in the schema
� RESTRICT: delete only if empty

� DROP TABLE
� RESTRICT: delete only if not referenced in a constraint

� ALTER TABLE
� change definition

4-11

� Basic SQL structure
SELECT A1, A2, …, An
FROM R1, R2, …, Rm
WHERE P

where
Ai are attributes from…
Ri which are relations
P is a predicate

* can replace Ai’s if all attributes are to be retrieved

SQL Queries

4-12

What Kind of Predicates?
� Simple predicates:

� Expression θ Value where Expression can be an
attribute or an arithmetic expression involving attributes
θ = {<, >, =, <=, >=, <>} and Value can be from one of
the data types

� Example:
➠ Name = ‘J. Doe’
➠ (Age + 30) >= 65

� Compound predicates
� Simple predicates combined with logical connectives

AND, OR, NOT

4-13

Example Simple Queries

� List names of all employees.
SELECT Ename
FROM Emp

� List names of all projects together with their
budgets.

SELECT Pname, Budget
FROM Project

� Find all cities where at least one project exists.
SELECT DISTINCT City
FROM Project

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-14

Queries With Predicates

� Find all professions that make more than $50,000.
SELECT Title
FROM Pay
WHERE Salary > 50000

� Find all employees who work on a project as
managers for longer than 17 months.

SELECT Eno
FROM Works
WHERE Dur > 17 AND Resp=‘Manager’

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-15

Ordering the Results

� Find the names and budgets of all projects with
budget greater than $250,000 and order the result
in ascending order of budget values.

SELECT Pname, Budget
FROM Project
WHERE Budget > 250000
ORDER BY Budget

� Default is ascending order, but descending order can be
specified by the DESC keyword.

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-16

Queries Over Multiple Relations

� List the name and titles of all employees who
work on a project for more than 17 months.

SELECT Ename, Title
FROM Emp, Works
WHERE Dur > 17
AND Emp.Eno = Works.Eno

� Find the name and titles of all employees who
work on a project located in Waterloo.

SELECT Ename, Title
FROM Emp E,Works W,Project P
WHERE P.City = ‘Waterloo’
AND E.Eno = W.Eno
AND W.Pno = P.Pno

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-17

Queries Over Multiple Relations

� List the pairs of employees and projects that are
co-located.

SELECT Eno, Pno
FROM Emp, Project
WHERE Emp.City = Project.City

� List the pairs of employee names who are located
in the same city.

SELECT E1.Ename, E2.Ename
FROM Emp E1, Emp E2
WHERE E1.City = E2.City

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-18

� UNION, EXCEPT (MINUS), INTERSECT
� Operands may be specified by

� create temp relations
ASSIGN TO temp-1 ASSIGN TO temp-1
SELECT A1, ..., An SELECT B1, ..., Bp
FROM R1, ..., Rm FROM S1, ..., Sr
WHERE P; WHERE Q;

temp-1 UNION temp-2;
� use parentheses

(SELECT A1, ..., An
FROM R1, ..., Rm
WHERE P)
UNION
(SELECTB1, ..., Bp
FROM S1, ..., Sr
WHERE Q);

Queries Involving Set Operators

4-19

Queries With Set Operators

� Find all cities where there is either an employee or a
project.

(SELECT City
FROM Emp)
UNION
(SELECT City
FROM Project)

� Find all cities in which an employee works but no projects
are located.

(SELECT City
FROM Emp)
EXCEPT
(SELECT City
FROM Project)

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-20

Queries With Set Operators

� Find all cities where there is both an employee and a project.
(SELECT City
FROM Emp)
INTERSECT
(SELECT City
FROM Project)

� List names of all projects and employees in
Waterloo.

(SELECT Ename
FROM Emp
WHERE City = ‘Waterloo’)
UNION ALL
(SELECT Pname
FROM Project
WHERE City = ‘Waterloo’)

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-21

� Queries within the WHERE clause of an outer query
SELECT
FROM
WHERE OPERATOR

(SELECT
FROM
WHERE)

� There can be multiple levels of nesting
� These can usually be written using other constructs

(UNION, JOIN, etc).
� Three operators: IN, (NOT) EXISTS, [CONTAINS]

Queries With Nested Structures

4-22

SELECT
FROM

WHERE A1, ..., An IN

(SELECT A1, ..., An
FROM R1, ..., Rm
WHERE P)

� Semantics: Tuples with attributes A1, ..., An are
found in the relation that is returned as a result of
the calculation of the inner query.

� Other comparison operators {<, <=, >, >=, <>} can
be used with ALL or with ANY in place of IN.

“IN” Construct

4-23

“IN” Construct Example

� Find names of all employees who work in
cities where projects with budgets less than
$50,000 are located.

SELECTEname
FROM Emp
WHERE City IN

(SELECT City
FROM Project
WHERE Budget < 50000)

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-24

“IN” Construct Example

� Find names of all employees who work in a city
where a project is located or are in a profession
that pays more than $60,000.

SELECT Ename
FROM Emp
WHERE City IN (SELECT City

FROM Project)
OR

Title IN (SELECT Title
FROM Pay
WHERE Salary > 60000)

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-25

“IN” Construct Example

� Find the names of all the projects that have budgets
greater than all projects in Calgary.

SELECT Pname
FROM Project
WHERE Budget > ALL

(SELECT Budget
FROM Project
WHERE City = ‘Calgary’)

� One can use ANY if what is desired is to find projects
whose budget is greater than some project in Calgary.

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-26

SELECT

FROM

WHERE (NOT) EXISTS

(SELECT *

FROM R1, ..., Rm
WHERE P)

� Semantics: For each tuple of the outer query,
execute the inner query; if there is at least one (no)
tuple in the result of the inner query, then retrieve
that tuple of the outer query.

� This accounts for the “there exists” type of queries

“EXISTS” Construct

4-27

“EXISTS” Construct Example

� Find the names of employees who work in a city in
which some project is located.

SELECT Ename
FROM Emp
WHERE EXISTS (SELECT *

FROM Project
WHERE Emp.City=Project.City)

� Find the names of employees who work in a city in
which no project is located.

SELECT Ename
FROM Emp
WHERE NOT EXISTS (SELECT *

FROM Project
WHERE Emp.City=Project.City)

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-28

“EXISTS” Construct Example

� Find the names and titles of all the employees who do
not work in a project.

SELECT Ename, Title
FROM Emp
WHERE NOT EXISTS

(SELECT *
FROM Works
WHERE Emp.Eno = Works.Eno)

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-29

“EXISTS” Construct Example

� Find all the employees who work on every project.
� Find all employees such that there is no project on which

they do not work
SELECT *
FROM Emp
WHERE NOT EXISTS

(SELECT Pno
FROM Project
WHERE NOT EXISTS
(SELECT *
FROM Works
WHERE Project.Pno=Works.Pno
AND Emp.Eno = Works.Eno))

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-30

Tuple Calculus and SQL

� Basic SQL Query:
SELECTA1, A2, …, An
FROM R1, R2, …, Rm
WHERE P(R1, R2, …, Rm)

� Tuple Calculus
{t[A1],…, t[An] | ∃r1 ∈ R1 ,..., ∃rk ∈ Rk

(∧j t(Aj)= rij(Aj))∧ P(r1,..., rk)}

� Note: Basic SQL query uses only ∃; No explicit
construct for ∀

4-31

Tuple Calculus & SQL
� Example: “Find all the employees who

work on every project.”
� Tuple Calculus

{e| e ∈ Emp ∧∀ p ∈ Project (∃ w ∈ Works
(p[Pno] = w[Pno] ∧ w[Pno]= e[Pno]))}

� Eliminate ∀: ∀x F(x) ≡ ¬∃x ¬ F(x)
{e | e ∈ Emp ∧¬∃ p ∈ Project ¬(∃ w ∈ Works

(p[Pno] = w[Pno] ∧ w[Pno] = e[Pno]))}

4-32

Tuple Calculus & SQL
� Convert to SQL Query

� Basic Rule: One level of nesting for each “¬ ∃”
� The corresponding SQL query becomes:

SELECT *
FROM Emp
WHERE NOT EXISTS

(SELECT Pno
FROM Project
WHERE NOT EXISTS

(SELECT *
FROM Works
WHERE Project.Pno=Works.Pno
AND Emp.Eno = Works.Eno))

4-33

“CONTAINS” Construct
(SELECT A1, ..., An
FROM R1, ..., Rm
WHERE P)
CONTAINS

(SELECT B1, ..., Bp
FROM S1, ..., Sr
WHERE Q)

� Semantics: Compare the result relations of the two
queries and return TRUE if the second one is a
subset of the first.

4-34

“CONTAINS” Construct Example

� Find all the employees who work on all the projects
located in Edmonton.

SELECT *
FROM Emp
WHERE ((SELECT Pno

FROM Works
WHERE Emp.Eno = Works.Eno)
CONTAINS
(SELECT Pno
FROM Project
WHERE City = ‘Edmonton’))

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-35

� Specify a function that calculates a numeric value
from a given relation.
� The function is usually applied to an attribute.
� COUNT, SUM, MAX, MIN, AVG

SELECT AggFunc(Ai), …, AggFunc(Aj)

FROM R1, ..., Rm
WHERE P

Aggregate Functions

4-36

Aggregate Query Examples

� Find the total budgets of projects in Waterloo.
SELECT SUM(Budget)
FROM Project
WHERE City = ‘Waterloo’

� Find the number of cities where there is a project
on which employee E4 works.

SELECT COUNT(DISTINCT City)
FROM Project, Works
WHERE Project.Pno = Works.Pno
AND Works.Eno = E4’

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-37

Aggregate Query Examples

� Find the names of projects which have budgets
greater than the average budget of all the projects.

SELECT Pname
FROM Project
WHERE Budget >

(SELECT AVG(Budget)
FROM Project)

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-38

Grouping Queries
� Group the results according to a set of attributes

SELECT Ai, …, An
FROM R1, ..., Rm
WHERE P
GROUP BY Aj …, Ak

� Rules:
� All of the attributes in the SELECT clause that are not

involved in an aggregation operation have to be
included in the GROUP BY clause.

� GROUP BY can have more attributes (k ≥ n)

4-39

Predicates on Groups
� Group the results according to a set of attributes if

they satisfy a certain condition
SELECT Ai, …, An
FROM R1, ..., Rm
WHERE P
GROUP BY Aj …, Ak
HAVING Q

� Rules:
� Q must have a single value per group.
� An attribute in Q has to either appear in an aggregation

operator or be listed in the GROUP BY

4-40

Grouping Query Examples

� Find the cities in which more than 2 employees live.
SELECT City
FROM Emp
GROUP BY City
HAVING COUNT(*) > 2

� Find the projects on which more than 2 employees share a
responsibility.

SELECT DISTINCT Pno
FROM Works
GROUP BY Pno,Resp
HAVING COUNT(*) > 2

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-41

Grouping Query Examples

� For each city where there are more than three
projects, find the names of projects.

SELECT City, Pname
FROM Project
WHERE City IN

(SELECT City
FROM Project
GROUP BY City
HAVING COUNT(*) > 3)

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-42

Grouping Query Examples

� Find the cities and the total budget where the
average project budget is greater than $120,000.

SELECT City, SUM(Budget)
FROM Project
GROUP BY City
HAVING AVG(Budget) > 120000

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-43

Grouping Query Examples

� For each project that employs more than 2
programmers, list the project number and the average
duration of assignment of the programmers.

SELECT Pno, AVG(Dur)
FROM Works
WHERE Resp = ‘Programmer’
GROUP BY Pno
HAVING COUNT(*) > 2

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-44

Update Commands
� Assume R(A1, …, An)
� INSERT

� Form
INSERT INTO R
VALUES (value(A1), …, value(An))

� Explicitly specify attribute names
INSERT INTO R(Ai, …, Ak)
VALUES (value(Ai), …, value(Ak))

� Insert a set of tuples as well
INSERT INTO R (

QUERY)

4-45

Update Command Examples

� Insert a new employee record for John Smith who is assigned
number E24, is a programmer and works in Waterloo.

INSERT INTO Emp(Eno, Ename, Title, City)
VALUES (‘E24’,‘John Smith’,‘Programmer,‘Waterloo’)

� Insert into Pay tuples for titles that exist in Emp; set salary to
$0.

INSERT INTO Pay
(SELECT Title, 0
FROM Emp)

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-46

Update Commands
� DELETE

DELETE FROM R
WHERE P

� Delete all the employees who have worked on project
P3 for less than 3 months.

DELETE FROM Emp
WHERE Eno IN

(SELECT Eno
FROM Works
WHERE Dur < 3)

4-47

Update Commands

� Assume R(A1, …, An)
� UPDATE

UPDATE R
SET Ai=value, …, Ak=value
WHERE P

4-48

Update Command Examples

� Increase by 5% the budgets of projects that are located in
Edmonton and employ 3 or more people.

UPDATE Project
SET Budget = Budget*1.05
WHERE City = ‘Edmonton’
AND Pno IN

(SELECT Pno
FROM Works
GROUP BY Pno
HAVING COUNT(*) >= 3)

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-49

View Definition

� General form
CREATE VIEW V[(Ai, …, Ak)]

AS SELECT A1, …, An
FROM R1, …, Rm
WHERE P

� In queries, treat view V as any base relation
SELECT Aj, …, Al
FROM V

WHERE Q

� Updates of views may be restricted

4-50

View Definition Example

� Create a view Waterloo-Projects of projects that are located in
Waterloo.

CREATE VIEW waterloo-projects
AS SELECT *

FROM Project
WHERE City = ‘Waterloo’

� Create a view Rich-Employees consisting of employees who
make more than $75,000.

CREATE VIEW rich-employees
AS SELECT Eno, Ename, Title, City

FROM Emp, Pay
WHERE Salary > 75000
AND Emp.Title = Pay.Title

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-51

View Definition Example

� Create a view project-employ that gives, for each
project at each city, the number of employees who
work on the project and their total employment
duration.

CREATE VIEW project-employ(Name, City, Number, Total)
AS SELECT Pname, City, COUNT(Eno), SUM(Dur)

FROM Project P, Works W
WHERE P.Pno = W.Pno
GROUP BY City,Pname

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

4-52

View Update

� A view with a single defining table is updatable if
the view attributes contain the primary key or
some other (non-null) candidate key.

� Views defined on multiple tables using joins are
generally not updatable.

� Views defined using aggregate functions are not
updatable.

4-53

View Management

� Two strategies for view management
� Query modification

➠A view is a virtual relation
➠Multiple queries on complex views
➠Query processor modifies a query on a view with

the view definition

� View materialization
➠View is a materialized table in the database
➠Incrementally update the view (update propagation)

4-54

Handling Nulls
� Attribute values can be NULL
� NULL is not a constant, nor can it be used as an

operand
� NAME = NULL Wrong!
� NULL + 30 Wrong!

� Operating on variables with NULL values
� If x is NULL

➠ x <arithmetic op.> constant is NULL
➠ x <arithmetic op.> y is NULL

� Comparing a NULL value with any other value returns
UNKNOWN (three-valued logic).

� In SQL, UNKNOWN is sometimes treated as false
(SELECT) and sometimes as true (constraints).

4-55

Outer Join

� Ensures that tuples from one or both relations that do not satisfy
the join condition still appear in the final result with other
relation’s attribute values set to NULL

� Extend SQL2 join expression
� R [NATURAL] JOIN S [ON <condition>]

to provide
� R [NATURAL] FULL OUTER JOIN S [ON <condition>]
� R [NATURAL] LEFT OUTER JOIN S [ON <condition>]
� R [NATURAL] RIGHT OUTER JOIN S [ON <condition>]

� Example: Find the employees and the projects that they work on.
� Emp NATURAL LEFT OUTER JOIN Works

� Produces employees even if they do not work on any project at the
moment.

4-56

Embedded SQL

� Ability to access a database from within an
application program.

� Why?
� SQL is not sufficient to write general applications

� SQL has bindings for various programming
languages.
� C, C++, Java
� Bindings describe how applications written in these

host languages can interact with a DBMS.

4-57

Embedded SQL Application Development
Source Files with
Embedded SQL

Preprocessor

Modified Source
Files

Host Language
Compiler

Object Code Files

Host Language
Linker

Executable

Libraries

Other Object Files
& Libraries

4-58

Embedded SQL Issues
� Interface

� The same as ad hoc SQL but with EXEC SQL
command

� Using query results within the application program
� Define shared variables using the format allowed in

host language
� Shared variables can be used in INSERT, DELETE,
UPDATE as well as regular queries and schema
modification statements

� Retrieval queries require care
➠ If the result relation has a single tuple: Each value in the

SELECT statement requires a shared variable
➠ If the result relation has a set of tuples: Cursor has to be

defined

4-59

Example for Update
� Consider an example to transfer some amount from one project’s

budget to another project’s budget.
#include <stdio.h>
EXEC SQL INCLUDE SQLCA;
main() {

EXEC SQL WHENEVER SQLERROR GOTO error:
EXEC SQL CONNECT TO Company;
EXEC SQL BEGIN DECLARE SECTION;
int pno1[3], pno2[3]; /* two project numbers */
int amount; /* amount to be transferred */

EXEC SQL END DECLARE SECTION;
/* Code (omitted) to read the project numbers and amount */
EXEC SQL UPDATE Project
SET Budget = Budget + :amount
WHERE Pno = :pno2;

EXEC SQL UPDATE Project
SET Budget = Budget - :amount
WHERE Pno = :pno1;

EXEC SQL COMMIT RELEASE;
return(0);

error:
printf(“update failed, sqlcode = %ld\n”, SQLCODE);
EXEC SQL ROLLBACK RELEASE;
return(-1);

}

4-60

Termination of SQL Queries

� COMMIT
� If you want to make your update results permanent.
� Embedded: EXEC SQL COMMIT;

� ROLLBACK
� If you want to discard your results.
� Embedded: EXEC SQL ROLLBACK;

� We will study the full semantics of these
commands later when we look at transactions

4-61

Retrieval Queries

� If the result is only one tuple, follow the same
approach.

� Example: For a given title, retrieve the salary.
…
EXEC SQL BEGIN DECLARE SECTION;

char title[15]; /* title to be input by user */
real sal; /* salary */

EXEC SQL END DECLARE SECTION;
…
/* Code (omitted) to get the title from use */
EXEC SQL SELECT Salary
INTO :sal
FROM Pay
WHERE Title = :title;
/* Code (omitted) to print the result */
…

4-62

More General Retrieval Queries
…

EXEC SQL BEGIN DECLARE SECTION;

<shared variable declarations>

EXEC SQL END DECLARE SECTION;

…

EXEC SQL DECLARE <cursor-name> [options] CURSOR FOR
<query> [options]

…

EXEC SQL OPEN <cursor-name>

…

while(condition) {

EXEC SQL FETCH FROM <cursor-name> INTO <shared-
variable(s)>

if(tuple exists) process it

else break

}

EXEC SQL CLOSE <cursor-name>

…

4-63

Cursors
� Use when the embedded SQL query is expected to return a

relation with more than one tuple
� Think about it almost as a pointer to successive tuples in the

result relation. At a given moment, it can be
� Before the first tuple
� On a tuple
� After the last tuple

...

0
1
2

n-1

n
n+1

-(n-1)
-n
-(n+1)

-2

-1
0

Before 1st tuple

After last tuple

4-64

Use of Cursors

1. Declare the cursor
� Associates a cursor identifier with a query

2. Open the cursor
� Causes (conceptually) the query to be evaluated,

generating a result

3. Fetch one or more tuples using the cursor
� Each FETCH returns values from the tuple that the

cursor is currently “pointing to”

4. Close the cursor

4-65

Cursor Declaration &Access
� Declaration

EXEC SQL DECLARE <cursor-name>
[INSENSITIVE][SCROLL] CURSOR FOR <query>
ORDER BY <attribute(s)>[FOR READ ONLY];

INSENSITIVE: The cursor is insensitive to changes in the relations
referred to in the query while the cursor is open.

SCROLL: Allows the subsequent FETCH command to retrieve tuples
other than the default which is moving forward.

ORDER BY: Orders the results of the query according to some
attribute(s).

FOR READ ONLY: Ensures that accesses to the underlying relation(s)
via this cursor will not change the relation.

� Access
EXEC SQL FETCH[NEXT|PRIOR|FIRST|LAST|RELATIVE[+|-
]n | ABSOLUTE[+|-]n]<cursor-name>

[INTO <var1>,…, <varn>]

4-66

Cursor Example
� For each project that employs more than 2 programmers, list the project

number and the average duration of assignment of programmers.
…
EXEC SQL BEGIN DECLARE SECTION;

char pno[3]; /* project number */
real avg-dur; /* average duration */

EXEC SQL END DECLARE SECTION;
…
EXEC SQL DECLARE duration CURSOR FOR

SELECT Pno, AVG(Dur)
FROM Works
WHERE Resp = ‘Programmer’
GROUP BY Pno
HAVING COUNT(*) > 2;

…
EXEC SQL OPEN duration;
…
while(1) {

EXEC SQL FETCH FROM duration INTO :pno, :avg-dur
if(strcmp(SQLSTATE, “02000”) then break
else print the info

}
EXEC SQL CLOSE duration
…

4-67

Dynamic (Embedded) SQL

� If the exact SQL statement to be executed is not
known at the time the application is written, static
embedding won’t work.
� E.g., forms-based applications

� In this case, the query can either be input
dynamically or it can be parameterized
� Immediate execution
� Preparation for later (and multiple) executions
� Parameterization

4-68

Immediate Execution

� General form
EXEC SQL EXECUTE IMMEDIATE :string

� Example
EXEC SQL BEGIN DECLARE SECTION;

char tup[] = “INSERT INTO EMP VALUES(‘E13’, ‘John
Doe’,...)”;

EXEC SQL END DECLARE SECTION;

EXEC SQL EXECUTE IMMEDIATE :tup;

� Rules:
� :string may not return an answer
� :string may not contain parameters
� Every time :string is executed, it is compiled ⇒ high

overhead

4-69

Prepared Execution
� General form

EXEC SQL PREPARE stmt FROM :string

� Rules
� :string may return results (it may be a query)
� :string may contain parameters
� stmt is not a host variable, but an identifier of the statement used

by the preprocessor
� Example

EXEC SQL BEGIN DECLARE SECTION ;

char tup[] = “INSERT INTO EMP VALUES(‘E13’, ‘John
Doe’,...)”;

EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE S1 FROM :tup;

EXEC SQL EXECUTE S1;

...

EXEC SQL EXECUTE S1;

4-70

Parametric Statements

� It is possible to parameterize the strings in dynamic SQL
statements

� Use placeholders (or parameter markers) - ? - where literals
can appear (not in place of relation names, column names,
etc.

� INSERT INTO Emp VALUES (?, ?, ?, ?)

� Indicate that host variable values will replace the
placeholders

� EXEC SQL EXECUTE S1 USING :eno, :ename,
:title, :city

� USING cannot be used with EXECUTE IMMEDIATE; has
to be used with previously prepared statements

4-71

Parametric Example - Update

…
EXEC SQL BEGIN DECLARE SECTION;
char tup[] = “INSERT INTO Emp VALUES (?,?,?,?);
char eno[3], ename[15], title[10], city[12];
EXEC SQL END DECLARE SECTION;
EXEC SQL PREPARE S1 FROM :tup;
/*code (omitted) to read values into :eno, etc */
EXEC SQL EXECUTE S1 USING :eno, :ename, :title,

:city;
…

4-72

Parametric Example - Retrieval
(Single Tuple)

…
EXEC SQL BEGIN DECLARE SECTION;
char tup[] = “SELECT Salary FROM Pay WHERE Title
= ‘?’”;
char title[15]; /* title to be input by user */
real sal; /* salary */
EXEC SQL END DECLARE SECTION;
EXEC SQL PREPARE S1 FROM :tup;
while (…) {

/*code (omitted) to read title from user
into :title */
EXEC SQL EXECUTE S1 INTO :sal USING :title;
…

}
…

Note: DB2 does not allow this; use dynamic cursor (next
slide)

4-73

Dynamic Cursors

� If the result is a relation with many tuples, then use
dynamic cursors.

� Define dynamic cursors similar to their static
counterparts, but use
� USING to parameterize the input to the cursor query
� INTO to hold the output parameters
EXEC SQL DECLARE cname CURSOR FOR stmt;

EXEC SQL OPEN cname USING :var1 [,…,:varn];

EXEC SQL FETCH cname INTO :out1 [,…,:outk];

EXEC SQL CLOSE cname;

4-74

Dynamic Cursor Example
…
EXEC SQL BEGIN DECLARE SECTION;

char resp[10]; /* responsibility to be input */
char pno[3]; /* project number */
real avg-dur; /* average duration */
char s[] = “SELECT Pno, AVG(Dur) FROM Works WHERE
Resp = ‘?’ GROUP BY Pno, Eno HAVING COUNT(*) > 2”;

EXEC SQL END DECLARE SECTION;
EXEC SQL PREPARE S1 FROM :s
EXEC SQL DECLARE duration CURSOR FOR S1;
read into :resp
EXEC SQL OPEN duration USING :resp;
while(1) {

EXEC SQL FETCH FROM duration INTO :pno, :avg-dur
if(strcmp(SQLSTATE, “02000”) then break
else print the info

}
EXEC SQL CLOSE duration
…

4-75

DBMS-Independent Application
Development

� Call-Level Interface (CLI)
� Vendor-neutral ISO standard programming interface for relational

database systems.
� Based on ODBC

� Open Database Connectivity (ODBC)
� Microsoft developed programming interface for relational DBMSs

with SQL interface.

� Java Database Connectivity (JDBC)
� Collection of Java classes that provide an ODBC/CLI-like

programming environment

� These provide object code-level portability from one
DBMS to another, while embedded SQL provides only
source code-level portability

4-76

ODBC Architecture

DBMS#2DBMS#1 Non-DBMS
Data Source

…

ODBC
Driver

ODBC
Driver

ODBC
Driver

Driver
Manager

Application
Program

ODBC

4-77

Attribute & Domain Constraints

� CHECK
� specifies the condition that each row has to satisfy

� Enhance the previous definition of Project:
CREATE TABLE Project
(Pno CHAR(3),
Pname VARCHAR(20),
Budget DECIMAL(10,2)DEFAULT 0.00

CHECK (BUDGET >= 0),
City CHAR(9));

PRIMARY KEY (Pno));

� Can be specified on domains as domain constraints
CREATE DOMAIN Gender AS CHAR(1) CHECK (VALUE IN
(‘F’, ‘M’));

4-78

Tuple Constraints
� Use CHECK command and specify condition
� The condition is checked every time a tuple is inserted or

updated and the action rejected if the condition is false
� Example

CREATE TABLE Works

(Eno CHAR(3),
Pno CHAR(3),
Resp CHAR(15),

Dur INT,

PRIMARY KEY (Eno,Pno),

FOREIGN KEY (Eno) REFERENCES Emp(Eno)

ON DELETE SET NULL

ON UPDATE CASCADE,

FOREIGN KEY (Pno) REFERENCES Project(Pno),

CHECK (NOT(PNO<‘P5’) OR Dur>18));

4-79

More Complex Tuple Constraints

� Example: No project can employ more than two employees who are
assigned to work more than 48 months.

CREATE TABLE Works
(Eno CHAR(3),
Pno CHAR(3),
Resp CHAR(15),
Dur INT,

PRIMARY KEY (Eno,Pno),
FOREIGN KEY (Eno) REFERENCES Emp(Eno)

ON DELETE SET NULL
ON UPDATE CASCADE,

FOREIGN KEY (Pno) REFERENCES Project(Pno),
CHECK(3 > ALL

(SELECT COUNT(Eno)
FROM Works
WHERE Dur > 48
GROUP BY Pno));

4-80

Assertions

� Global constraints that apply to multiple relations.
� General form

� CREATE ASSERTION name CHECK (condition)

� Example: The total salaries of employees who work on
project P5 cannot exceed $500,000.

CREATE ASSERTION salary-control CHECK

((SELECT SUM(Salary)
FROM Emp E, Pay P, Works W
WHERE W.Pno = ‘P5’
AND W.Eno = E.Eno
AND E.Title = P.Title) <= 500000);

4-81

Triggers

� A trigger is a procedure that is automatically
invoked by the DBMS in response to changes to
the database.

� Three parts:
� Event

➠ Change to the database that activates the trigger
� Condition

➠ A test or a query that needs to be checked when the trigger is
activated

➠ For queries, condition is true if the query returns any result
� Action

➠ The procedure that is executed when the trigger is activated
and the condition is true

4-82

Trigger Issues

� With respect to invoking statement
� Execution before or after
� Execution in place of
� At the end of the transaction within which the trigger is

activated (deferred)
� Asynchronously within the context of a separate

transaction
� How many times executed?

� Statement-level: once per invoking statement
� Row-level: once per modified tuple

