Relational Databases

Basic concepts

- Data model: organize data as tables
- A relational database is a set of tables

Advantages

- Simple concepts
- Solid mathematical foundation
 - ➡ set theory
- Powerful query languages
- Efficient query optimization strategies
- Design theory
- Industry standard
 - Relational model
 - SQL language

Relational Model

Relation

- A relation R with attributes A={A₁, A₂, ..., A_n} defined over n domains D={D₁, D₂, ..., D_n} (not necessarily distinct) with values {Dom₁, Dom₂, ..., Dom_n} is a finite, time varying set of n-tuples <d₁, d₂, ..., d_n> such that d₁ ∈ Dom₁, d₂ ∈ Dom₂, ..., d_n ∈ Dom_n and A₁ ∈ D₁, A₂ ∈ D₂, ..., A_n ∈ D_n.
- Notation: $R(A_1, A_2, ..., A_n)$ or $R(A_1; D_1, A_2; D_2, ..., A_n; D_n)$
- Alternatively, given *R* as defined above, an instance of it at a given time is a set of *n*-tuples:

 $\{ <A_1: d_1, A_2: d_2, ..., A_n: d_n > | d_1 \in Dom_1, d_2 \in Dom_2, ..., d_n \in Dom_n \}$

- Tabular structure of data where
 - *R* is the table heading
 - attributes are table columns
 - each tuple is a row

Relation Schemes and Instances

Relational scheme

- A relation scheme is the definition; i.e., a set of attributes
- A relational database scheme is a set of relation schemes:
 - → i.e., a set of sets of attributes
- Relation instance (simply *relation*)
 - An relation is an instance of a relation scheme
 - a relation r over a relation scheme R = {A₁, ..., A_n} is a subset of the Cartesian product of the domains of all attributes, i.e.,

 $\mathbf{r} \subseteq Dom_1 \times Dom_2 \times \ldots \times Dom_n$

Domains

- A domain is a *type* in the programming language sense
 - Name: String
 - Salary: Real
- Domain values is a set of acceptable values for a variable of a given type.
 - Name: CdnNames = $\{\ldots\}$,
 - Salary: ProfSalary = {45,000 150,000}
 - Simple/Composite domains
 - Address = Street name+street number+city+province+ postal code
- Domain compatibility
 - Binary operations (e.g., comparison to one another, addition, etc) can be performed on them.
- Full support for domains is not provided in many current relational DBMSs

Relation Schemes

EMP(<u>ENO</u>, ENAME, TITLE) PROJ (<u>PNO</u>, PNAME, BUDGET) WORKS(<u>ENO,PNO</u>, RESP, DUR) PAY(<u>TITLE</u>, SALARY)

- Underlined attributes are relation keys (tuple identifiers).
- Tabular form

Different Representation

Example Relation Instances

EMP				WORKS			
ENO	ENAME	TITLE		ENO	PNO	RESP	DUR
E1 E2 E3 E4 E5 E6 E7 E8	J. Doe M. Smith A. Lee J. Miller B. Casey L. Chu R. Davis J. Jones	Elect. Eng. Syst. Anal. Mech. Eng. Programmer Syst. Anal. Elect. Eng. Mech. Eng. Syst. Anal.		E1 E2 E3 E3 E4 E5 E6 E7 E7 E8	P1 P2 P3 P4 P2 P4 P3 P5 P3	Manager Analyst Analyst Consultant Engineer Programmer Manager Manager Engineer Engineer Manager	12 24 6 10 48 18 24 48 36 23 40
				E7 E8	P5 P3	Engineer Manager	23 40

PROJ

PNO	PNAME	BUDGET
P1	Instrumentation	150000
	Database Develop.	135000
P3	Maintenance	250000
P5	CAD/CAM	500000

PAY

TITLE	SALARY
Elect. Eng.	55000
Syst. Anal.	70000
Mech. Eng.	45000
Programmer	60000

Properties

- Based on finite set theory
 - No ordering among attributes
 - → Sometimes we prefer to refer to them by their relative order
 - No ordering among tuples
 - Query results may be ordered, but two differently ordered relation instances are equivalent
 - No duplicate tuples allowed
 - Commercial systems allow duplicates (so bag semantics)
 - Value-oriented: tuples are identified by the attributes values
- All attribute values are atomic
 - no tuples, or sets, or other structures
- Degree or arity
 - number of attributes
- Cardinality
 - number of tuples

Integrity Constraints

Key Constraints

- Key: a set of attributes that uniquely identifies tuples
- Candidate key: a minimum set of attributes that form a key
- Superkey: A set of one or more attributes, which, taken collectively, allow us to identify uniquely a tuple in a relation.
- Primary key: a designated candidate key
- Data Constraints
 - Functional dependency, multivalued dependency, ...
 - Check constraints
- Others
 - Null constraints
 - Referential constraints

Views

Views can be defined

- on single relations PROJECT(PNO, PNAME)
- on multiple relations SAL(ENO,TITLE,SALARY)
- Relations from which they are derived are called base relations
- View relations can be
 - virtual; never physically created
 - ••• updates to views is a problem
 - materialized: physical relations exist
 - propagation of base table updates to materialized view tables

View Updates

Views that are derived from multiple tables may cause problems

EMP

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng.
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

PAY

TITLE	SALARY
Elect. Eng.	55000
Syst. Anal.	70000
Mech. Eng.	45000
Programmer	60000

 \Rightarrow

SAL	
-----	--

ENO	TITLE	SALARY
E1 E2 E3 E4 E5 E6 E7 E8	Elect. Eng. Syst. Anal. Mech. Eng. Programmer Syst. Anal. Elect. Eng. Mech. Eng. Syst. Anal.	55000 70000 45000 60000 70000 55000 45000 70000

How do you delete a tuple from SAL?

Relational Algebra

Form

 $< Operator >_{< parameters >} < Operands > \rightarrow < Result > \downarrow \qquad \downarrow$ Relation (s) Relation

Relational Algebra Operators

Fundamental

- union
- set difference
- selection
- projection
- Cartesian product
- Additional
 - rename
 - intersection
 - join
 - quotient (division)
- Union compatibility
 - same degree
 - corresponding attributes defined over the same domain

Union

- Similar to set union
- General form

$$R \cup S = \{t \mid t \in R \text{ or } t \in S\}$$

where *R*, *S* are relations, *t* is a tuple variable

- Result contains tuples that are in *R* or in *S*, but not both (duplicates removed)
- *R*, *S* should be union-compatible

Set Difference

General Form

 $R - S = \{t \mid t \in R \text{ and } t \notin S\}$

where *R* and S are relations, *t* is a tuple variable

- Result contains all tuples that are in *R*, but not in *S*.
- $R S \neq S R$
- *R*, *S* union-compatible

Selection

Produces a horizontal subset of the operand relationGeneral form

 $\sigma_F(R) = \{t \mid t \in R \text{ and } F(t) \text{ is true}\}$

where

- *R* is a relation, *t* is a tuple variable
- *F* is a formula consisting of

operands that are constants or attributes

arithmetic comparison operators

 $<,>,=,\neq, \quad,\geq$

logical operators

 \land,\lor,\urcorner

Selection Example

EMP

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng.
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

$\sigma_{\text{TITLE='Elect. Eng.'}}(EMP)$			
ENO	ENAME	TITLE	
E1 E6	J. Doe L. Chu	Elect. Eng Elect. Eng.	

Projection

- Produces a vertical slice of a relation
- General form

$$\Pi_{A_1,\ldots,A_n}(R) = \{t[A_1,\ldots,A_n] \mid t \in R\}$$

where

- *R* is a relation, *t* is a tuple variable
- $\{A_1, \dots, A_n\}$ is a subset of the attributes of *R* over which the projection will be performed
- Note: projection can generate duplicate tuples.
 Commercial systems (and SQL) allow this and provide
 - Projection with duplicate elimination
 - Projection without duplicate elimination

Projection Example

PROJ

PNO	PNAME	BUDGET
P1	Instrumentation	150000
P2	Database Develop.	135000
P3	CAD/CAM	250000
P4	Maintenance	310000
P5	CAD/CAM	500000

$\Pi_{\text{PNO,BUDGET}}(\text{PROJ})$

PNO	BUDGET
P1	150000
P2	135000
P3	250000
P4	310000
P5	500000

Cartesian (Cross) Product

Given relations

- R of degree k_1 , cardinality n_1
- S of degree k_{2} , cardinality n_{2}

Cartesian (cross) product:

$$R \times S = \{ t \ [A_1, \dots, A_{k_1}, A_{k_1+1}, \dots, A_{k_1+k_2}] \mid t[A_1, \dots, A_{k_1}] \in R \text{ and} \\ t[A_{k_1+1}, \dots, A_{k_1+k_2}] \in S \}$$

The result of $R \times S$ is a relation of degree $(k_1 + k_2)$ and consists of all $(n_1 * n_2)$ -tuples where each tuple is a concatenation of one tuple of R with one tuple of S.

Cartesian Product Example

F	М	Ρ

 $EMP \times PAY$

ENO	ENA	ME	тіт	ΊE		ENO	ENAME	EMP.TITLE	PAY.TITLE	SALARY	
E1	J. Do	oe	Elect.	Eng		E1	J. Doe	Elect. Eng.	Elect. Eng.	55000	
E2	M. S	Smith	Syst. /	Anal.		E1	J. Doe	Elect. Eng.	Syst. Anal.	70000	
E3	A. Le	ee	Mech.	Eng.		E1	J. Doe	Elect. Eng.	Mech. Eng.	45000	
E4	J. M	iller	Progra	ammer		E1	J. Doe	Elect. Eng.	Programmer	60000	
E5	B. C	asey	Syst. /	Anal.		E2	M. Smith	Syst. Anal.	Elect. Eng.	55000	
E6	L. C	hu	Elect.	Eng.		E2	M. Smith	Syst. Anal.	Syst. Anal.	70000	
E7	R. D	avis	Mech.	Eng.		E2	M. Smith	Syst. Anal.	Mech. Eng.	45000	
E8	J. Jo	ones	Syst. /	Anal.		E2	M. Smith	Syst. Anal.	Programmer	60000	
					_	E3	A. Lee	Mech. Eng.	Elect. Eng.	55000	
DAX			E3	A. Lee	Mech. Eng.	Syst. Anal.	70000				
					-	E3	A. Lee	Mech. Eng.	Mech. Eng.	45000	
TITL	E	SAL	ARY			E3	A. Lee	Mech. Eng.	Programmer	60000	
					_						_
Elect. El	ng.	5	5000								
Syst. An	nal.	7	0000			Eo	Llanca	Svot Apol	Elect Eng	55000	
Mech. Eng.		g. 45000				J. Jones	Syst. Anal.	Elect. Elig.	70000		
Programmer		ner 60000				Εŏ	J. Jones	Syst. Anal.	Syst. Anal.	/0000	
				l		E8	J. Jones	Syst. Anal.	Mech. Eng.	45000	
						E8	J. Jones	Svst. Anal.	Programmer	60000	

Intersection

Typical set intersection

$$R \cap S = \{t \mid t \in R \text{ and } t \in S\}$$

$$= R - (R - S)$$

\blacksquare *R*, *S* union-compatible

Join

General form $R \bowtie_{F(R,A_i,S,B_j)} S = \{t[A_1,\ldots,A_n,B_1,\ldots,B_m]|$ $t[A_1,\ldots,A_n] \in R \text{ and } t[B_1,\ldots,B_m] \in S$ and $F(R,A_i,S,B_j) \text{ is true}\}$

where

• *R*, *S* are relations, *t* is a tuple variable

• $F(R.A_i, S.B_j)$ is a formula defined as that of selection.

A derivative of Cartesian product

• $R \bowtie_F S = \sigma_F(R \times S)$

Join Example

EMP

ENO	ENAME	TITLE
E1	J. Doe	Elect. Ena
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

WORKS

E1P1ManagerE2P1AnalystE2P2AnalystE3P3ConsultantE3P4EngineerE4P2ProgrammerE5P2ManagerE6P4Manager	NO PNO	RESP	DUR
E6 P4 Manager	E1 P1 E2 P1 E2 P2 E3 P3 E3 P4 E4 P2 E5 P2	Manager Analyst Analyst Consultant Engineer Programmer Manager	12 24 6 10 48 18 24
E7 P3 Engineer E7 P5 Engineer	E6 P4 E7 P3 E7 P5	Manager Manager Engineer Engineer	48 36 23

EMP Memp.eno>works.eno

Types of Join

θ-join

• The formula F uses operator θ

Equi-join

- The formula *F* only contains equality
- $R \bowtie_{R.A=S.B} S$
- Natural join
 - Equi-join of two relations *R* and *S* over an attribute (or attributes) common to both *R* and *S* and projecting out one copy of those attributes
 - $R \bowtie S = \prod_{R \cup S} \sigma_F(R \times S)$

Natural Join Example

EMP	Ε	Μ	Ρ
-----	---	---	---

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

TITLE	SALARY
Elect. Eng.	55000
Syst. Anal.	70000
Mech. Eng.	45000
Programmer	60000

EMP⊳⊲PAY

ENO	ENAME	TITLE	SALARY
E1 E2	J. Doe M. Smith	Elect. Eng. Analyst	55000 70000
E3	A. Lee	Mech. Eng.	45000
E4	J. Miller	Programmer	60000
E5	B. Casey	Syst. Anal.	70000
E6	L. Chu	Elect. Eng.	55000
E7 E8	R. Davis J. Jones	Mech. Eng. Syst. Anal.	45000 70000

Join is over the common attribute TITLE

Types of Join

Outer-Join

- Ensures that tuples from one or both relations that do not satisfy the join condition still appear in the final result with other relation's attribute values set to NULL
- Left outer join \square
- Right outer join ►
- Full outer join →

Division (Quotient)

Given relations

- *R* of degree $k_1 (R = \{A_1, ..., A_{k_1}\})$
- S of degree k_2 (S = { $B_1, ..., B_{k_2}$ })

Let $A = \{A_1, ..., A_{k_1}\}$ [i.e., R(A)] and $B = \{B_1, ..., B_{k_2}\}$ [i.e., S(B)] and $B \subseteq A$.

Then, $T = R \div S$ gives *T* of degree $k_1 - k_2$ [i.e., T(Y) where Y = A - B] such that for a tuple *t* to appear in *T*, the values in *t* must appear in *R* in combination with *every tuple* in *S*.

Division (cont'd)

<u>R</u>				
X	Y			
x1	y1			
x2	y1			
x3	y1			
x4	y1			
x1	y2			
x3	y2			
x2	y3			
x3	y3			
x4	y3			
x1	y4			
x2	y4			
x3	y4			

 $\begin{array}{l} \mathsf{T}_1 \leftarrow \Pi_\mathsf{Y}(\mathsf{R}) \\ \mathsf{T}_2 \leftarrow \Pi_\mathsf{Y}((\mathsf{S} \times \mathsf{T}_1) - \mathsf{R}) \\ \mathsf{T} \leftarrow \mathsf{T}_1 - \mathsf{T}_2 \end{array}$

Division - Formally

Given relations

• *R* of degree $k_1 (R = \{A_1, ..., A_{k_1}\})$ • *S* of degree $k_2 (S = \{B_1, ..., B_{k_2}\})$ Division of *R* by *S* (given , $\{B_1, ..., B_{k_2}\} \subseteq \{A_1, ..., A_{k_1}\}$) $R \div S = \{t[\{A_1, ..., A_{k_1}\} - \{B_1, ..., B_{k_2}\}] |$ $\forall u \in S \exists v \in R(v[S] = u \land v[R - S] = t)\} =$ $\Pi_{R-S}(R) - \Pi_{R-S}((\Pi_{R-S}(R) \times S) - R)$

 $R \div S$ results in a relation of degree $(k_1 - k_2)$ and consists of all $(k_1 - k_2)$ -tuples *t* such that for all k_1 -tuples *u* in *S*, the tuple *tu* is in *R*.

Division Example

EMP

ENO	PNO	PNAME	BUDGET
ENO E1 E2 E2 E3 E3 E3 E4 E5 E6 E7 E8	PNO P1 P2 P1 P4 P2 P2 P4 P3 P3	PNAME Instrumentation Instrumentation Database Develop. Instrumentation Maintenance Instrumentation Instrumentation Maintenance CAD/CAM	BUDGE I 150000 150000 135000 150000 310000 150000 310000 250000 250000
E3 E3	P2 P3	Database Develop. CAD/CAM	135000 250000

PROJ

PNO	PNAME	BUDGET
P1	Instrumentation	150000
P2	Database Develop.	135000
P3	CAD/CAM	250000
P4	Maintenance	310000

EMP+**PROJ**

ENO	
E3	

Emp (Eno, Ename, Title, City) (note we added City)
Project(Pno, Pname, Budget, City) (note we added City)
Pay(<u>Title</u>, Salary)
Works(Eno, Pno, Resp, Dur)

List names of all employees.

• $\Pi_{\text{Ename}}(\text{Emp})$

 List names of all projects together with their budgets.

• $\Pi_{\text{Pname,Budget}}(\text{Project})$

Emp (Eno, Ename, Title, City) (note we added City)
Project(Pno, Pname, Budget, City) (note we added City)
Pay(<u>Title</u>, Salary)
Works(Eno, Pno, Resp, Dur)

Find all job titles to which at least one employee has been hired.

• $\Pi_{\text{Title}}(\text{Emp})$

Find the records of all employees who work in Toronto.

• $\sigma_{\text{City='Toronto'}}(\text{Emp})$

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

Find all cities where either an employee works or a project exists.

• $\Pi_{\text{City}}(\text{Emp}) \cup \Pi_{\text{City}}(\text{Project})$

- Find all cities that has a project but no employees who work there.
 - $\Pi_{\text{City}}(\text{Project}) \Pi_{\text{City}}(\text{Emp})$

Emp (<u>Eno</u>, Ename, Title, City) Project(<u>Pno</u>, Pname, Budget, City) Pay(<u>Title</u>, Salary) Works(<u>Eno, Pno</u>, Resp, Dur)

- Find the names of all projects with budgets greater than \$225,000.
 - $\Pi_{\text{Pname}}(\sigma_{\text{Budget}>225000}(\text{Project}))$
- List the names and budgets of projects on which employee E1 works.
 - $\Pi_{\text{Pname, Budget}}(\text{Project} \bowtie (\sigma_{\text{Eno}=`E1'}(\text{Works})))$
 - $\Pi_{\text{Pname, Budget}}(\sigma_{\text{Emp.Eno=Works.Eno}}(\text{Project} \times \sigma_{\text{Eno='E1'}}(\text{Works})))$

Emp (<u>Eno</u>, Ename, Title, City) Project(<u>Pno</u>, Pname, Budget, City) Pay(<u>Title</u>, Salary) Works(<u>Eno, Pno</u>, Resp, Dur)

Find the name of all the employees who work in a city where no project is located.

• $\Pi_{\text{Ename}}(\text{Emp} \bowtie (\Pi_{\text{City}}(\text{Emp}) - \Pi_{\text{City}}(\text{Project})))$

Find all the cities that have both employees and projects.

• $\Pi_{\text{City}}(\text{Emp}) \cap \Pi_{\text{City}}(\text{Project})$

Find all the employees who work on every project.

• $\Pi_{\text{Eno, Pno}}(\text{Works}) \div \Pi_{\text{Pno}}(\text{Project})$

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

Find the names and budgets of all projects who employ programmers.

 Π_{Pname,Budget}(Project ⋈ Works ⋈ σ_{Title='Programmer'}(Emp))

 List the names of employees and projects that are co-located.

• $\Pi_{\text{Ename, Pname}}(\text{Emp} \bowtie \text{Project})$

Relational Calculus

- Instead of specifying how to obtain the result, specify what the result is, i.e., the relationships that is supposed to hold in the result.
- Based on first-order predicate logic.
 - symbol alphabet
 - → logic symbols (e.g., \Rightarrow , \neg)
 - ➡ a set of constants
 - ➡ a set of variables
 - → a set of n-ary predicates
 - → a set of n-ary functions
 - **parentheses**
 - expressions (called well formed formulae (wff)) built from this symbol alphabet.

Types of Relational Calculus

- According to the primitive variable used in specifying the queries.
 - tuple relational calculus
 - domain relational calculus

Tuple Relational Calculus

The primitive variable is a tuple variable which specifies a tuple of a relation. In other words, it ranges over the tuples of a relation.

In tuple relational calculus queries are specified as $\{t \mid F(t)\}$

where *t* is a tuple variable and *F* is a formula consisting of the atoms and operators. *F* evaluates to True or False.

t can be qualified for only some attributes: t[A]

Tuple Relational Calculus

■ The atoms are the following:

1 Tuple variables

If the relation over which the variable ranges is known, the variable may be qualified by the name of the relation as *R.t* or *R*(*t*).

Conditions

→ $s[A] \theta t[B]$, where *s* and *t* are tuple variables and *A* and *B* are components of *s* and *t*, respectively;

 $\theta \in \{<,>,=,\neq,\leq,\geq\}.$

Specifies that component *A* of *s* stands in relation θ to the *B* component of *t* (e.g., *s*[SALARY] > *t*[SALARY]).

→ $s[A] \theta c$, where s, A and θ are as defined above and c is a constant. For example, s[NAME] = "Smith".

Tuple Relational Calculus

• A formula F is composed of

• atoms

• Boolean operators \land , \lor , \neg

• existential quantifier \exists

• universal quantifier \forall

- Formation rules:
 - Each atom is a formula.
 - If *F* and *G* are formulae, so are $F \land G$, $F \lor G$, $\neg F$, and $\neg G$.
 - If F is a formula, so is (F).
 - If *F* is a formula and *t* is a free variable in *F*, then $\exists t(F)$ and $\forall t(F)$ are also formulae. These can also be written as $\exists tF(t)$ and $\forall tF(t)$
 - Nothing else is a formula.

Safety of Calculus Expressions

Problem:

- the size of $\{t \mid F(t)\}$ must be finite.
- $\{t \mid \neg t \in R\}$ is not finite
- Safety:
 - A query is safe if, for all databases conforming to the schema, the query result can be computed using only constants appearing in the database or the query itself.
 - Since database is finite, the set of constants appearing in it is finite as well as the constants in the query; therefore, the query result will be finite

Emp (<u>Eno</u>, Ename, Title, City) Project(<u>Pno</u>, Pname, Budget, City) Pay(<u>Title</u>, Salary) Works(<u>Eno, Pno</u>, Resp, Dur)

List names of all employees.

 $\{t[\text{Ename}] \mid t \in \text{Emp}\}$

 List names of all projects together with their budgets.

 $\{ \leq t [Pname], t [Budget] > | t \in Project] \}$

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

Find all job titles to which at least one employee has been hired.

 $\{t[\text{Title}] \mid t \in \text{Emp})\}$

Find the records of all employees who work in Toronto.

 $\{t \mid t \in \text{customer} \land t[\text{City}] = \text{`Toronto'}\}$

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(<u>Title</u>, Salary)
Works(Eno, Pno, Resp, Dur)

Find all cities where either an employee works or a project exists.

 $\{t[City] \mid t \in Emp \lor \exists s(s \in Project \land t[City] = s[City])\}$

- $\{t[City] \mid t \in Project \lor \exists s(s \in Emp \land t[City] = s[City])\}$
- Find all cities that has a project but no employees who work there.

{*t*[City] | *t* ∈ Project $\land \neg \exists s(s \in \text{Emp} \land t[\text{City}] = s[\text{City}])$ }

Emp (<u>Eno</u>, Ename, Title, City) Project(<u>Pno</u>, Pname, Budget, City) Pay(<u>Title</u>, Salary) Works(<u>Eno, Pno</u>, Resp, Dur)

Find the names of all projects with budgets greater than \$225,000.

{t[Pname] | $t \in$ Project $\land t$ [Budget] > 225000}

List the names and budgets of projects in which employee E1 works.

 $\{ < t[Pname], t[Budget] > | \\ t \in Project \land \exists s(s \in Works \land t[Pname] = s[Pname] \land \\ s[Eno] = `E1') \}$

Tuple Calculus and Relational Algebra

- THEOREM: Safe relational calculus and algebra are equivalent in terms of their expressive power.
 - This is called relational completeness.
 - This does not mean all useful computations can be performed
 - Aggregation, counting, transitive closure not specified

Basic Correspondence

Algebra Operation	Calculus Operator
Π	Э
σ	$x \theta$ constant
\cup	\vee
\bowtie	\wedge
-	—
÷	\forall

Tuple Calculus and Relational Algebra

 Π is like \exists "there exists" ...

 \div is like ∀ "for all" ...

Expressing ÷ using basic operators

Domain Relational Calculus

The primitive variable is a domain variable which specifies a component of a tuple.

 \Rightarrow the range of a domain variable consists of the domains over which the relation is defined.

- Other differences from tuple relational calculus:
 - The atoms are the following :
 - → Each domain is an atom.
 - Conditions which can be defined as follows are atoms :
 - $x \theta y$, where x and y are domain variables or constants;
 - ◆ $\langle x_1, x_2, ..., x_n \rangle \in R$ where *R* is a relation of degree *n* and each x_i is a domain variable or constant.
 - Formulae are defined in exactly the same way as in tuple relational calculus, with the exception of using domain variables instead of tuple variables.

Domain Relational Calculus

The queries are specified in the following form :

$$\{ < x_1, x_2, ..., x_n > | F(x_1, x_2, ..., x_n) \}$$

where *F* is a formula in which $x_1, ..., x_n$ are the free variables.

Domain Relational Calculus

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

List the names and budgets of projects in which employee E1 works.

 $\{ \langle b,c \rangle \mid \exists a,d(\langle a,b,c,d \rangle \in \text{Project} \land \exists e,f,g(\langle e,a,f,g \rangle \in \text{Works} \land e = \text{`E1'}) \}$

QBE (Query-by-Example) Queries

Find the names of all employees

Emp	Eno	Ename	Title	City	Рау	Title	Salary
		Ρ.					

Project	Pno	Pname	Budget	City

Works	Eno	Pno	Resp	Dur

QBE Queries

■ Find the names of projects with budgets greater than \$350,000.

Emp	Eno	Ename	Title	City	Рау	Title	Salary

Project	Pno	Pname	Budget	City
		Ρ.	>350000	

Works	Eno	Pno	Resp	Dur

QBE Queries

■ Find the name and cities of all employees who work on a project for more than 20 months.

Emp	Eno	Ename	Title	City	Рау	Title	Salary
	_x	Ρ.		Ρ.			

Project	Pno	Pname	Budget	City

Works	Eno	Pno	Resp	Dur
	_ X			>20