
2-1

Relational Databases
� Basic concepts

� Data model: organize data as tables
� A relational database is a set of tables

� Advantages
� Simple concepts
� Solid mathematical foundation

➠ set theory
� Powerful query languages
� Efficient query optimization strategies
� Design theory

� Industry standard
� Relational model
� SQL language

2-2

� Relation
� A relation R with attributes A={A1, A2, …, An} defined over n

domains D={D1, D2, ..., Dn} (not necessarily distinct) with values
{Dom1, Dom2, ..., Domn } is a finite, time varying set of n-tuples <d1,
d2, ..., dn> such that d1 ∈ Dom1, d2 ∈ Dom2, ..., dn ∈ Domn and A1
∈ D1, A2 ∈ D2, ..., An ∈ Dn.

� Notation: R(A1, A2, …, An) or R(A1: D1, A2: D2, …, An: Dn)
� Alternatively, given R as defined above, an instance of it at a given

time is a set of n-tuples:
{< A1: d1, A2: d2, …, An: dn> | d1∈Dom1, d2∈Dom2, ..., dn∈Domn}

� Tabular structure of data where
� R is the table heading
� attributes are table columns
� each tuple is a row

Relational Model

2-3

Relation Schemes and Instances

� Relational scheme
� A relation scheme is the definition; i.e., a set of

attributes
� A relational database scheme is a set of relation

schemes:
➠ i.e., a set of sets of attributes

� Relation instance (simply relation)
� An relation is an instance of a relation scheme
� a relation r over a relation scheme R = {A1, ..., An} is a

subset of the Cartesian product of the domains of all
attributes, i.e.,

r ⊆ Dom1 × Dom2 × … × Domn

2-4

� A domain is a type in the programming language sense
� Name: String
� Salary: Real

� Domain values is a set of acceptable values for a variable of a
given type.

� Name: CdnNames = {…},
� Salary: ProfSalary = {45,000 - 150,000}
� Simple/Composite domains

➠ Address = Street name+street number+city+province+ postal code

� Domain compatibility
� Binary operations (e.g., comparison to one another, addition, etc) can

be performed on them.
� Full support for domains is not provided in many current

relational DBMSs

Domains

2-5

EMP(ENO, ENAME, TITLE)
PROJ (PNO, PNAME, BUDGET)
WORKS(ENO,PNO, RESP, DUR)
PAY(TITLE, SALARY)

� Underlined attributes are relation
keys (tuple identifiers).

� Tabular form

Relation Schemes

ENO

EMP

ENAME TITLE

PROJ

PNO PNAME BUDGET

RESP

WORKS

PNOENO DUR

PAY

SALARYTITLE

2-6

Different Representation

EMP

ENAME

TITLE

PROJ

PNAME

BUDGET

ENO

PNO

PAY

SALARY

TITLE

WORKS

ENO

PNO

RESP

DUR

2-7

Example Relation Instances
ENO ENAME TITLE

E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.
E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.
E7 R. Davis Mech. Eng.
E8 J. Jones Syst. Anal.

EMP

ENO PNO RESP

E1 P1 Manager 12

DUR

E2 P1 Analyst 24
E2 P2 Analyst 6
E3 P3 Consultant 10
E3 P4 Engineer 48
E4 P2 Programmer 18
E5 P2 Manager 24
E6 P4 Manager 48
E7 P3 Engineer 36

E8 P3 Manager 40

WORKS

E7 P5 Engineer 23

PROJ

PNO PNAME BUDGET

P1 Instrumentation 150000

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000
P5 CAD/CAM 500000

TITLE SALARY

PAY

Elect. Eng. 55000
Syst. Anal. 70000
Mech. Eng. 45000
Programmer 60000

2-8

� Based on finite set theory
� No ordering among attributes

➠ Sometimes we prefer to refer to them by their relative order
� No ordering among tuples

➠ Query results may be ordered, but two differently ordered relation
instances are equivalent

� No duplicate tuples allowed
➠ Commercial systems allow duplicates (so bag semantics)

� Value-oriented: tuples are identified by the attributes values
� All attribute values are atomic

� no tuples, or sets, or other structures
� Degree or arity

� number of attributes
� Cardinality

� number of tuples

Properties

2-9

� Key Constraints
� Key: a set of attributes that uniquely identifies tuples
� Candidate key: a minimum set of attributes that form a

key
� Superkey: A set of one or more attributes, which, taken

collectively, allow us to identify uniquely a tuple in a
relation.

� Primary key: a designated candidate key
� Data Constraints

� Functional dependency, multivalued dependency, …
� Check constraints

� Others
� Null constraints
� Referential constraints

Integrity Constraints

2-10

Views

� Views can be defined
� on single relations PROJECT(PNO, PNAME)
� on multiple relations SAL(ENO,TITLE,SALARY)

� Relations from which they are derived are called
base relations

� View relations can be
� virtual; never physically created

➠ updates to views is a problem

� materialized: physical relations exist
➠ propagation of base table updates to materialized view tables

2-11

View Updates
� Views that are derived from multiple tables may

cause problems

ENO ENAME TITLE

E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.
E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.
E7 R. Davis Mech. Eng.
E8 J. Jones Syst. Anal.

EMP

TITLE SALARY

PAY

Elect. Eng. 55000
Syst. Anal. 70000
Mech. Eng. 45000
Programmer 60000

ENO TITLE SALARY

E1 Elect. Eng. 55000
E2 Syst. Anal. 70000
E3 Mech. Eng. 45000
E4 Programmer 60000
E5 Syst. Anal. 70000
E6 Elect. Eng. 55000
E7 Mech. Eng. 45000
E8 Syst. Anal. 70000

SAL

➯

How do you delete a tuple from SAL?

2-12

Form

<Operator><parameters> <Operands> → <Result>
↓ ↓

Relation (s) Relation

Relational Algebra

2-13

� Fundamental
� union
� set difference
� selection
� projection
� Cartesian product

� Additional
� rename
� intersection
� join
� quotient (division)

� Union compatibility
� same degree
� corresponding attributes defined over the same domain

Relational Algebra Operators

2-14

� Similar to set union
� General form

R ∪ S={t | t∈R or t∈S}
where R, S are relations, t is a tuple variable
� Result contains tuples that are in R or in S, but not

both (duplicates removed)
� R, S should be union-compatible

Union

2-15

Set Difference

� General Form

R – S={t | t∈R and t∉S}

where R and S are relations, t is a tuple variable

� Result contains all tuples that are in R, but not in S.

� R – S ≠ S – R

� R, S union-compatible

2-16

� Produces a horizontal subset of the operand relation
� General form

σF(R)={t | t∈R and F(t) is true}
where

� R is a relation, t is a tuple variable
� F is a formula consisting of

➠ operands that are constants or attributes
➠ arithmetic comparison operators

<, >, =, ≠, ≤, ≥
➠ logical operators

∧, ∨, ¬

Selection

2-17

Selection Example

ENO ENAME TITLE

E1 J. Doe Elect. Eng
E6 L. Chu Elect. Eng.

σ TITLE='Elect. Eng.'(EMP)

ENO ENAME TITLE
E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.
E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.
E7 R. Davis Mech. Eng.
E8 J. Jones Syst. Anal.

EMP

2-18

� Produces a vertical slice of a relation
� General form

ΠA1,…,An
(R)={t[A1,…, An] | t∈R}

where
� R is a relation, t is a tuple variable
� {A1,…, An} is a subset of the attributes of R over which the

projection will be performed

� Note: projection can generate duplicate tuples.
Commercial systems (and SQL) allow this and provide

� Projection with duplicate elimination
� Projection without duplicate elimination

Projection

2-19

Projection Example

ΠPNO,BUDGET(PROJ)

PNO BUDGET

P1 150000
P2 135000
P3 250000
P4 310000
P5 500000

PROJ

PNO BUDGET

P2 135000

P3 250000
P4 310000
P5 500000

PNAME

P1 150000Instrumentation
Database Develop.

CAD/CAM
Maintenance
CAD/CAM

2-20

� Given relations
� R of degree k1 , cardinality n1

� S of degree k2 , cardinality n2

� Cartesian (cross) product:
R × S = {t [A1,…,Ak1

, Ak1+1,…,Ak1+k2
] | t[A1,…,Ak1

]∈R and
t[Ak1+1,…,Ak1+k2

]∈S}

The result of R × S is a relation of degree (k1+ k2) and consists
of all (n1* n2)-tuples where each tuple is a concatenation of
one tuple of R with one tuple of S.

Cartesian (Cross) Product

2-21

Cartesian Product Example
ENO ENAME EMP.TITLE PAY.TITLE SALARY

E1 J. Doe Elect. Eng.
E1 J. Doe Elect. Eng.
E1 J. Doe Elect. Eng.
E1 J. Doe Elect. Eng.

Elect. Eng. 55000
Syst. Anal. 70000
Mech. Eng. 45000
Programmer 60000

E2 M. Smith Syst. Anal.
E2 M. Smith Syst. Anal.
E2 M. Smith Syst. Anal.
E2 M. Smith Syst. Anal.

Elect. Eng. 55000
Syst. Anal. 70000
Mech. Eng. 45000
Programmer 60000
Elect. Eng. 55000
Syst. Anal. 70000
Mech. Eng. 45000
Programmer 60000

Elect. Eng. 55000
Syst. Anal. 70000
Mech. Eng. 45000
Programmer 60000

E3 A. Lee Mech. Eng.
E3 A. Lee Mech. Eng.
E3 A. Lee Mech. Eng.
E3 A. Lee Mech. Eng.

E8 J. Jones Syst. Anal.
E8 J. Jones Syst. Anal.
E8 J. Jones Syst. Anal.
E8 J. Jones Syst. Anal.

EMP × PAY

ENO ENAME TITLE

E1 J. Doe Elect. Eng
E2 M. Smith Syst. Anal.
E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.
E7 R. Davis Mech. Eng.
E8 J. Jones Syst. Anal.

EMP

TITLE SALARY

PAY

Elect. Eng. 55000
Syst. Anal. 70000
Mech. Eng. 45000
Programmer 60000

2-22

� Typical set intersection

R ∩ S = {t | t∈R and t∈S}

= R – (R – S)

� R, S union-compatible

Intersection

2-23

� General form
R F(R.Ai,S.Bj) S={t[A1,…,An,B1,…,Bm]|

t[A1,…,An]∈R and t[B1,…,Bm]∈S
and F(R.Ai, S.Bj) is true}

where
� R, S are relations, t is a tuple variable
� F (R.Ai, S.Bj)is a formula defined as that of selection.

� A derivative of Cartesian product
� R F S = σF(R × S)

Join

2-24

Join Example
ENO ENAME TITLE

E1 J. Doe Elect. Eng
E2 M. Smith Syst. Anal.
E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.
E7 R. Davis Mech. Eng.
E8 J. Jones Syst. Anal.

EMP

EMP EMP.ENO>WORKS.ENOWORKS

ENO PNO RESP

E1 P1 Manager 12

DUR

E2 P1 Analyst 24
E2 P2 Analyst 6
E3 P3 Consultant 10
E3 P4 Engineer 48
E4 P2 Programmer 18
E5 P2 Manager 24
E6 P4 Manager 48
E7 P3 Engineer 36

E8 P3 Manager 40

WORKS

E7 P5 Engineer 23

EMP. ENAME TITLE WORKS. PNO RESP DUR
ENO. ENO

E2 M. Smith Elect. Eng. E1 P1 Manager 12
E3 A. Lee Syst. Anal. E1 P1 Manager 12
E3 A. Lee Syst. Anal. E2 P1 Analyst 24
E3 A. Lee Syst. Anal. E2 P2 Analyst 6
E4 J. Miller Programmer E1 P1 Manager 12
E4 J. Miller Programmer E2 P1 Analyst 24
E4 J. Miller Programmer E2 P2 Analyst 6
E4 J. Miller Programmer E3 P3 Consultant 10
E4 J. Miller Programmer E3 P4 Engineer 48
E5 B. Casey Syst. Anal. E1 P1 Manager 12
E5 B. Casey Syst. Anal. E2 P1 Analyst 24
E5 B. Casey Syst. Anal. E2 P2 Analyst 6
E5 B. Casey Syst. Anal. E3 P3 Consultant 10
E5 B. Casey Syst. Anal. E3 P4 Engineer 48
E5 B. Casey Syst. Anal. E4 P2 Programmer 18
E6 L. Chu Elect. Eng. E1 P1 Manager 12
E6 L. Chu Elect. Eng. E2 P1 Analyst 24
E6 L. Chu Elect. Eng. E2 P2 Analyst 6
E6 L. Chu Elect. Eng. E3 P3 Consultant 10
E6 L. Chu Elect. Eng. E3 P4 Engineer 48
E6 L. Chu Elect. Eng. E4 P2 Programmer 18
E6 L. Chu Elect. Eng. E5 P2 Manager 24
… … … … … … …

2-25

� θ-join
� The formula F uses operator θ

� Equi-join
� The formula F only contains equality
� R R.A=S.B S

� Natural join
� Equi-join of two relations R and S over an attribute (or

attributes) common to both R and S and projecting out one copy
of those attributes

� R S = ΠR∪SσF(R × S)

Types of Join

2-26

Natural Join Example

ENO ENAME TITLE SALARY

E1 J. Doe Elect. Eng. 55000
M. Smith 70000E2 Analyst

E3 A. Lee Mech. Eng. 45000

E4 J. Miller Programmer 60000
E5 B. Casey Syst. Anal. 70000
E6 L. Chu Elect. Eng. 55000
E7 R. Davis Mech. Eng. 45000
E8 J. Jones Syst. Anal. 70000

ENO ENAME TITLE

E1 J. Doe Elect. Eng
E2 M. Smith Syst. Anal.
E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E5 B. Casey Syst. Anal.
E6 L. Chu Elect. Eng.
E7 R. Davis Mech. Eng.
E8 J. Jones Syst. Anal.

EMP

TITLE SALARY

PAY

Elect. Eng. 55000
Syst. Anal. 70000
Mech. Eng. 45000
Programmer 60000

EMP PAY

Join is over the common attribute TITLE

2-27

� Outer-Join
� Ensures that tuples from one or both relations that do

not satisfy the join condition still appear in the final
result with other relation’s attribute values set to
NULL

� Left outer join
� Right outer join
� Full outer join

Types of Join

2-28

Given relations
� R of degree k1 (R = {A1,…,Ak1

})
� S of degree k2 (S = {B1,…,Bk2

})
Let A = {A1,…,Ak1

} [i.e., R(A)]and B = {B1,…,Bk2
}

[i.e., S(B)] and B ⊆ A.
Then, T = R ÷ S gives T of degree k1-k2 [i.e., T(Y) where
Y = A-B] such that for a tuple t to appear in T, the
values in t must appear in R in combination with every
tuple in S.

Division (Quotient)

2-29

Division (cont’d)

x1 y1
x2 y1
x3 y1
x4 y1
x1 y2
x3 y2
x2 y3
x3 y3
x4 y3
x1 y4
x2 y4
x3 y4

X Y
R

x1
x2
x3

X
S

y1
y4

T
Y

T1 ← ΠY(R)
T2 ← ΠY((S × T1) − R)
T ← T1 − T2

2-30

Given relations
� R of degree k1 (R = {A1,…,Ak1

})
� S of degree k2 (S = {B1,…,Bk2

})
Division of R by S (given , {B1,…,Bk2

} ⊆{A1,…,Ak1
})

R ÷ S = {t[{A1,…,Ak1
}−{B1,…,Bk2

}] |
∀u∈S∃v∈R(v[S]=u ∧v[R−S]=t)} =
ΠR-S(R)−ΠR-S ((ΠR-S (R)×S)− R)

R ÷ S results in a relation of degree (k1− k2) and consists of all
(k1− k2)-tuples t such that for all k1-tuples u in S, the tuple tu is in
R.

Division - Formally

2-31

Division Example

ENO PNO PNAME

E1 P1 Instrumentation 150000

BUDGET

E2 P1 Instrumentation 150000
E2 P2 Database Develop. 135000

E3 P4 Maintenance
E4 P2 Instrumentation
E5 P2 Instrumentation
E6 P4
E7 P3 CAD/CAM
E8 P3 CAD/CAM

310000
150000
150000
310000
250000
250000

EMP

Maintenance

E3 P1 Instrumentation 150000

ENO

E3

EMP÷PROJ

PROJ

PNO BUDGET

P2 135000

P3 250000
P4 310000

PNAME
P1 150000Instrumentation

Database Develop.

CAD/CAM
Maintenance

E3 P2 Database Develop. 135000
E3 P3 CAD/CAM 250000

2-32

Emp (Eno, Ename, Title, City) (note we added City)
Project(Pno, Pname, Budget, City) (note we added City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

� List names of all employees.
� ΠEname(Emp)

� List names of all projects together with their
budgets.
� ΠPname,Budget(Project)

Example Queries

2-33

Emp (Eno, Ename, Title, City) (note we added City)
Project(Pno, Pname, Budget, City) (note we added City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

� Find all job titles to which at least one employee
has been hired.
� ΠTitle(Emp)

� Find the records of all employees who work in
Toronto.
� σCity=‘Toronto’(Emp)

Example Queries

2-34

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

� Find all cities where either an employee works or
a project exists.
� ΠCity(Emp) ∪ ΠCity(Project)

� Find all cities that has a project but no employees
who work there.
� ΠCity(Project) − ΠCity(Emp)

Example Queries

2-35

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

� Find the names of all projects with budgets greater
than $225,000.
� ΠPname(σBudget>225000 (Project))

� List the names and budgets of projects on which
employee E1 works.
� ΠPname, Budget(Project (σEno=‘E1’ (Works)))
� Π Pname, Budget(σEmp.Eno=Works.Eno (Project × σ Eno=‘E1’

(Works)))

Example Queries

2-36

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

� Find the name of all the employees who work in a
city where no project is located.
� ΠEname(Emp (ΠCity(Emp) − ΠCity(Project))

� Find all the cities that have both employees and
projects.
� ΠCity(Emp) ∩ ΠCity(Project)

� Find all the employees who work on every project.
� Π Eno, Pno(Works) ÷ ΠPno(Project)

Example Queries

2-37

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

� Find the names and budgets of all projects who
employ programmers.
� ΠPname,Budget(Project Works σTitle=‘Programmer’(Emp))

� List the names of employees and projects that are
co-located.
� ΠEname, Pname(Emp Project)

Example Queries

2-38

� Instead of specifying how to obtain the result,
specify what the result is, i.e., the relationships
that is supposed to hold in the result.

� Based on first-order predicate logic.
� symbol alphabet

➠ logic symbols (e.g., ⇒, ¬)
➠ a set of constants
➠ a set of variables
➠ a set of n-ary predicates
➠ a set of n-ary functions
➠ parentheses

� expressions (called well formed formulae (wff))
built from this symbol alphabet.

Relational Calculus

2-39

� According to the primitive variable used in
specifying the queries.
� tuple relational calculus
� domain relational calculus

Types of Relational Calculus

2-40

� The primitive variable is a tuple variable which
specifies a tuple of a relation. In other words, it ranges
over the tuples of a relation.

� In tuple relational calculus queries are specified as
{t | F(t)}

where t is a tuple variable and F is a formula consisting
of the atoms and operators. F evaluates to True or
False.
t can be qualified for only some attributes: t[A]

Tuple Relational Calculus

2-41

� The atoms are the following:
❶ Tuple variables

➠ If the relation over which the variable ranges is known, the
variable may be qualified by the name of the relation as R.t
or R(t).

❷ Conditions
➠ s[A] θ t[Β], where s and t are tuple variables and A and B

are components of s and t, respectively;
θ ∈ {<, >, =, ≠, ≤, ≥}.
Specifies that component A of s stands in relation θ to the B
component of t (e.g., s[SALARY] > t[SALARY]).

➠ s[A] θ c, where s, A and θ are as defined above and c is a
constant. For example, s[NAME] = “Smith”.

Tuple Relational Calculus

2-42

� A formula F is composed of
� atoms
� Boolean operators ∧, ∨, ¬
� existential quantifier ∃
� universal quantifier ∀

� Formation rules:
� Each atom is a formula.
� If F and G are formulae, so are F∧G, F∨G, ¬F, and ¬G.
� If F is a formula, so is (F).
� If F is a formula and t is a free variable in F, then ∃t(F)

and ∀t(F) are also formulae. These can also be written as
∃tF(t) and ∀tF(t)

� Nothing else is a formula.

Tuple Relational Calculus

2-43

Safety of Calculus Expressions

� Problem:
� the size of {t | F(t)}must be finite.
� {t | ¬t∈R}is not finite

� Safety:
� A query is safe if, for all databases conforming to the

schema, the query result can be computed using only
constants appearing in the database or the query itself.

� Since database is finite, the set of constants appearing
in it is finite as well as the constants in the query;
therefore, the query result will be finite

2-44

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

� List names of all employees.
{t[Ename] | t ∈ Emp}

� List names of all projects together with their
budgets.
{<t[Pname],t[Budget]> | t ∈ Project]}

Example Queries

2-45

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

� Find all job titles to which at least one employee
has been hired.
{t[Title]| t ∈ Emp)}

� Find the records of all employees who work in
Toronto.
{t | t ∈ customer ∧ t[City] = ‘Toronto’}

Example Queries

2-46

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

� Find all cities where either an employee works or a
project exists.
{t[City] | t ∈ Emp ∨ ∃s(s ∈ Project ∧ t[City] = s[City])}
{t[City] | t ∈ Project ∨ ∃s(s ∈ Emp ∧ t[City] = s[City])}

� Find all cities that has a project but no employees
who work there.
{t[City] | t∈Project ∧ ¬∃s(s∈Emp ∧ t[City] = s[City])}

Example Queries

2-47

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

� Find the names of all projects with budgets greater
than $225,000.
{t[Pname] | t∈Project ∧ t[Budget] > 225000}

� List the names and budgets of projects in which
employee E1 works.
{<t[Pname], t[Budget] >|

t∈Project ∧ ∃s(s∈Works∧t[Pname]=s[Pname] ∧
s[Eno]=‘E1’)}

Example Queries

2-48

Tuple Calculus and Relational
Algebra

� THEOREM: Safe relational calculus and algebra are
equivalent in terms of their expressive power.

� This is called relational completeness.
� This does not mean all useful computations can be performed

➠ Aggregation, counting, transitive closure not specified

� Basic Correspondence
Algebra Operation Calculus Operator

Π ∃
σ x θ constant
∪ ∨

∧
- ¬
÷ ∀

2-49

Tuple Calculus and Relational
Algebra

Π is like ∃ “there exists” ...
÷ is like ∀ “for all” ...

Expressing ÷ using basic operators
R÷S = ΠΑ(R) - ΠΑ(ΠΑ(R) S - R)

Similar to

∀x F(x) = ¬ (∃x ¬ F(x))

2-50

� The primitive variable is a domain variable which
specifies a component of a tuple.
➱ the range of a domain variable consists of the
domains over which the relation is defined.

� Other differences from tuple relational calculus:
� The atoms are the following :

➠ Each domain is an atom.
➠ Conditions which can be defined as follows are atoms :

✦ x θ y, where x and y are domain variables or constants;
✦ <x1, x2, ..., xn> ∈R where R is a relation of degree n and each xi is a

domain variable or constant.
� Formulae are defined in exactly the same way as in tuple

relational calculus, with the exception of using domain
variables instead of tuple variables.

Domain Relational Calculus

2-51

The queries are specified in the following
form :

{<x1, x2, ..., xn> | F(x1, x2, ..., xn)}

where F is a formula in which x1,..., xn are
the free variables.

Domain Relational Calculus

2-52

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

List the names and budgets of projects in which
employee E1 works.

{<b,c> | ∃a,d(<a,b,c,d> ∈ Project ∧ ∃e,f,g(<e,a,f,g> ∈
Works ∧ e = ‘E1’))}

Domain Relational Calculus

2-53

Emp Ename CityTitle

Project Pno Pname Budget City

Eno Pay SalaryTitle

Works Eno Pno Resp Dur

� Find the names of all employees

QBE (Query-by-Example)
Queries

P.

2-54

� Find the names of projects with budgets greater than
$350,000.

QBE Queries

Emp Ename CityTitle

Project Pno Pname Budget City

Eno Pay SalaryTitle

Works Eno Pno Resp Dur

>350000P.

2-55

� Find the name and cities of all employees who work on a
project for more than 20 months.

QBE Queries

Emp Ename CityTitle

Project Pno Pname Budget City

Eno Pay SalaryTitle

Works Eno Pno Resp Dur

P. P.

_X >20

_X

