Relational Databases

- Basic concepts

- Data model: organize data as tables
- A relational database is a set of tables
- Advantages
- Simple concepts
- Solid mathematical foundation
- set theory
- Powerful query languages
- Efficient query optimization strategies
- Design theory
- Industry standard
- Relational model
- SQL language

Relational Model

Relation

- A relation R with attributes $A=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ defined over n domains $D=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ (not necessarily distinct) with values $\left\{\operatorname{Dom}_{1}, \operatorname{Dom}_{2}, \ldots, \operatorname{Dom}_{n}\right\}$ is a finite, time varying set of n-tuples $<d_{1}$, $d_{2}, \ldots, d_{n}>$ such that $d_{1} \in \operatorname{Dom}_{1}, d_{2} \in \operatorname{Dom}_{2}, \ldots, d_{n} \in \operatorname{Dom}_{n}$ and A_{1} $\in D_{1}, A_{2} \in D_{2}, \ldots, A_{n} \in D_{n}$.
- Notation: $R\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ or $R\left(A_{1}: D_{1}, A_{2}: D_{2}, \ldots, A_{n}: D_{n}\right)$
- Alternatively, given R as defined above, an instance of it at a given time is a set of n-tuples:
$\left\{<A_{1}: d_{1}, A_{2}: d_{2}, \ldots, A_{n}: d_{n}>\mid d_{1} \in \operatorname{Dom}_{1}, d_{2} \in \operatorname{Dom}_{2}, \ldots, d_{n} \in \operatorname{Dom}_{n}\right\}$
- Tabular structure of data where
- R is the table heading
- attributes are table columns
- each tuple is a row

Relation Schemes and Instances

- Relational scheme

- A relation scheme is the definition; i.e., a set of attributes
- A relational database scheme is a set of relation schemes:
Ime i.e., a set of sets of attributes
- Relation instance (simply relation)
- An relation is an instance of a relation scheme
- a relation \mathbf{r} over a relation scheme $R=\left\{A_{1}, \ldots, A_{n}\right\}$ is a subset of the Cartesian product of the domains of all attributes, i.e.,

$$
\mathbf{r} \subseteq \operatorname{Dom}_{1} \times \operatorname{Dom}_{2} \times \ldots \times \operatorname{Dom}_{n}
$$

Domains

\square A domain is a type in the programming language sense

- Name: String
- Salary: Real

■ Domain values is a set of acceptable values for a variable of a given type.

- Name: $\mathrm{CdnNames}=\{\ldots\}$,
- Salary: ProfSalary $=\{45,000-150,000\}$
- Simple/Composite domains
- Address $=$ Street name + street number + city + province + postal code

Domain compatibility

- Binary operations (e.g., comparison to one another, addition, etc) can be performed on them.
- Full support for domains is not provided in many current relational DBMSs

Relation Schemes

EMP(ENO, ENAME, TITLE)
PROJ (PNO, PNAME, BUDGET) WORKS(ENO,PNO, RESP, DUR)
PAY(TITLE, SALARY)

EMP
ENO ENAME TITLE
PROJ PNO PNAME BUDGET
WORKS
ENO

■ Underlined attributes are relation keys (tuple identifiers).

PAY
IITE SALARY

■ Tabular form

Different Representation

Example Relation Instances

EMP

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng.
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

WORKS

ENO	PNO	RESP	DUR
E1	P1	Manager	12
E2	P1	Analyst	24
E2	P2	Analyst	6
E3	P3	Consultant	10
E3	P4	Engineer	48
E4	P2	Programmer	18
E5	P2	Manager	24
E6	P4	Manager	48
E7	P3	Engineer	36
E7	P5	Engineer	23
E8	P3	Manager	40

PROJ

PNO	PNAME	BUDGET
P1	Instrumentation	150000
P2	Database Develop.	135000
P3	CAD/CAM	250000
P4	Maintenance	310000
P5	CAD/CAM	500000

PAY

TITLE	SALARY
Elect. Eng.	55000
Syst. Anal.	70000
Mech. Eng.	45000
Programmer	60000

Properties

- Based on finite set theory
- No ordering among attributes
(10) Sometimes we prefer to refer to them by their relative order
- No ordering among tuples
(10) Query results may be ordered, but two differently ordered relation instances are equivalent
- No duplicate tuples allowed
- Commercial systems allow duplicates (so bag semantics)
- Value-oriented: tuples are identified by the attributes values
- All attribute values are atomic
- no tuples, or sets, or other structures
- Degree or arity
- number of attributes
- Cardinality
- number of tuples

Integrity Constraints

- Key Constraints

- Key: a set of attributes that uniquely identifies tuples
- Candidate key: a minimum set of attributes that form a key
- Superkey: A set of one or more attributes, which, taken collectively, allow us to identify uniquely a tuple in a relation.
- Primary key: a designated candidate key

■ Data Constraints

- Functional dependency, multivalued dependency, ...
- Check constraints

■ Others

- Null constraints
- Referential constraints

Views

Views can be defined

- on single relations PROJECT(PNO, PNAME)
- on multiple relations SAL(ENO,TITLE,SALARY)
- Relations from which they are derived are called base relations
- View relations can be
- virtual; never physically created
- updates to views is a problem
- materialized: physical relations exist
met propagation of base table updates to materialized view tables

View Updates

■ Views that are derived from multiple tables may cause problems

EMP				SAL		
ENO	ENAME	TITLE		ENO	TITLE	SALARY
E1	J. Doe	Elect. Eng.		E1	Elect. Eng.	55000
E2	M. Smith	Syst. Anal.		E2	Syst. Anal.	70000
E3	A. Lee	Mech. Eng.		E3	Mech. Eng.	45000
E4	J. Miller	Programmer	\sum	E4	Programmer	60000
E5	B. Casey	Syst. Anal.		E5	Syst. Anal.	70000
E6	L. Chu	Elect. Eng.		E6	Elect. Eng.	55000
E7	R. Davis	Mech. Eng.		E7	Mech. Eng.	45000
E8	J. Jones	Syst. Anal.		E8	Syst. Anal.	70000
PAY						

TITLE	SALARY
Elect. Eng.	55000
Syst. Anal.	70000
Mech. Eng.	45000
Programmer	60000

How do you delete a tuple from SAL?

Relational Algebra

Form

Relational Algebra Operators

- Fundamental
- union
- set difference
- selection
- projection
- Cartesian product

Additional

- rename
- intersection
- join
- quotient (division)
- Union compatibility
- same degree
- corresponding attributes defined over the same domain

Union

- Similar to set union

General form

$$
R \cup S=\{t \mid t \in R \text { or } t \in S\}
$$

where R, S are relations, t is a tuple variable

- Result contains tuples that are in R or in S, but not both (duplicates removed)
- R, S should be union-compatible

Set Difference

■ General Form

$$
R-S=\{t \mid t \in R \text { and } t \notin S\}
$$

where R and S are relations, t is a tuple variable

- Result contains all tuples that are in R, but not in S.
- $R-S \neq S-R$
- R, S union-compatible

Selection

■ Produces a horizontal subset of the operand relation

- General form

$$
\sigma_{F}(R)=\{t \mid t \in R \text { and } F(t) \text { is true }\}
$$

where

- R is a relation, t is a tuple variable
- F is a formula consisting of
n+ operands that are constants or attributes
- 1 ar arithmetic comparison operators

$$
<,>,=, \neq, \leq, \geq
$$

n
\wedge, \vee, \neg

Selection Example

EMP

| ENO | ENAME | TITLE | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| E1 | J. Doe | Elect. Eng. | |
| E2 | M. Smith | Syst. Anal. | |
| E3 | A. Lee | Mech. Eng. | |
| E4 | J. Miller | Programmer | |
| E5 | B. Casey | Syst. Anal. | |
| E6 | L. Chu | Elect. Eng. | |
| E7 | R. Davis | Mech. Eng. | |
| E8 | J. Jones | Syst. Anal. | |

Projection

■ Produces a vertical slice of a relation
■ General form

$$
\Pi_{A_{1}, \ldots, A_{n}}(R)=\left\{t\left[A_{1}, \ldots, A_{n}\right] \mid t \in R\right\}
$$

where

- R is a relation, t is a tuple variable
- $\left\{A_{1}, \ldots, A_{n}\right\}$ is a subset of the attributes of R over which the projection will be performed
■ Note: projection can generate duplicate tuples.
Commercial systems (and SQL) allow this and provide
- Projection with duplicate elimination
- Projection without duplicate elimination

Projection Example

PROJ

PNO	PNAME	BUDGET
P1	Instrumentation	150000
P2	Database Develop.	135000
P3	CAD/CAM	250000
P4	Maintenance	310000
P5	CAD/CAM	500000

$\Pi_{\text {PNO,BUDGET }}$ (PROJ)

PNO	BUDGET
P1	150000
P2	135000
P3	250000
P4	310000
P5	500000

Cartesian (Cross) Product

- Given relations
- R of degree k_{1}, cardinality n_{1}
- S of degree k_{2}, cardinality n_{2}

■ Cartesian (cross) product:

$$
\begin{aligned}
R \times S= & \left\{t\left[A_{1}, \ldots, A_{k_{1}}, A_{k_{1}+1}, \ldots, A_{k_{1}+k_{2}}\right] \mid t\left[A_{1}, \ldots, A_{k_{1}}\right] \in R\right. \text { and } \\
& \left.t\left[A_{k_{1}+1}, \ldots, A_{k_{1}+k_{2}}\right] \in S\right\}
\end{aligned}
$$

The result of $R \times S$ is a relation of degree $\left(k_{1}+k_{2}\right)$ and consists of all $\left(n_{1} * n_{2}\right)$-tuples where each tuple is a concatenation of one tuple of R with one tuple of S.

Cartesian Product Example

EMP

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

PAY

TITLE	SALARY
Elect. Eng.	55000
Syst. Anal.	70000
Mech. Eng.	45000
Programmer	60000

$E M P \times P A Y$

ENO	ENAME	EMP.TITLE	PAY.TITLE	SALARY
E1	J. Doe	Elect. Eng.	Elect. Eng.	55000
E1	J. Doe	Elect. Eng.	Syst. Anal.	70000
E1	J. Doe	Elect. Eng.	Mech. Eng.	45000
E1	J. Doe	Elect. Eng.	Programmer	60000
E2	M. Smith	Syst. Anal.	Elect. Eng.	55000
E2	M. Smith	Syst. Anal.	Syst. Anal.	70000
E2	M. Smith	Syst. Anal.	Mech. Eng.	45000
E2	M. Smith	Syst. Anal.	Programmer	60000
E3	A. Lee	Mech. Eng.	Elect. Eng.	55000
E3	A. Lee	Mech. Eng.	Syst. Anal.	70000
E3	A. Lee	Mech. Eng.	Mech. Eng.	45000
E3	A. Lee	Mech. Eng.	Programmer	60000
E8	J. Jones	Syst. Anal.	Elect. Eng.	55000
E8	J. Jones	Syst. Anal.	Syst. Anal.	70000
E8	J. Jones	Syst. Anal.	Mech. Eng.	45000
E8	J. Jones	Syst. Anal.	Programmer	60000

Intersection

Typical set intersection

$$
\begin{aligned}
R \cap S & =\{t \mid t \in R \text { and } t \in S\} \\
& =R-(R-S)
\end{aligned}
$$

- R, S union-compatible

Join

General form

$$
\begin{array}{rl}
R \bowtie_{F\left(R . A_{i} S . S B_{j}\right)} S & S \\
& \left\{t\left[A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right]\right. \\
& t\left[A_{1}, \ldots, A_{n}\right] \in R \text { and } t\left[B_{1}, \ldots, B_{m}\right] \in S \\
& \text { and } \left.F\left(R . A_{i}, S . B_{j}\right) \text { is true }\right\}
\end{array}
$$

- R, S are relations, t is a tuple variable
- $F\left(R . A_{i}, S . B_{j}\right)$ is a formula defined as that of selection.
- A derivative of Cartesian product
- $R \bowtie_{F} S=\sigma_{F}(R \times S)$

EMP				Join Example EMP $\bowtie_{\text {EMP.ENO }}>$ WORKS.ENOWORKS								
ENO	ENA	ME	TITLE									
E1 E2	J. Doe		Elect. Eng		EMP. ENO.	ENAME	TITLE	WORKS. ENO	PNO	RESP	DUR	
E3	A. Lee		Mech. Eng.		E2	M. Smith	Elect. Eng.	E1	P1	Manager	12	
E4	J. Miller		Programmer		E3	A. Lee	Syst. Anal.	E1	P1	Manager	12	
E5	B. Casey		Syst Anal		E3	A. Lee	Syst. Anal.	E2	P1	Analyst	24	
E6	L. Chu		Syst. Anal.		E3	A. Lee	Syst. Anal.	E2	P2	Analyst	6	
E6			Elect. Eng.		E4	J. Miller	Programmer	E1	P1	Manager	12	
E7	R. Davis		Mech. Eng.		E4	J. Miller	Programmer	E2	P1	Analyst	24	
E8	J. Jones		Syst. Anal.		E4	J. Miller	Programmer	E2	P2	Analyst	6	
WORKS					E4	J. Miller	Programmer	E3	P3	Consultant	10	
					E4	J. Miller	Programmer	E3	P4	Engineer	48	
ENO	PNO	RESP		DUR	E5	B. Casey	Syst. Anal.	E1	P1	Manager	12	
ENO				E5	B. Casey	Syst. Anal.	E2	P1	Analyst	24		
	P1 Manager					E5	B. Casey	Syst. Anal.	E2	P2	Analyst	6
E1				12	E5	B. Casey	Syst. Anal.	E3	P3	Consultant	10	
E2	P1 Analyst			24	E5	B. Casey	Syst. Anal.	E3	P4	Engineer	48	
E2	P2	Analyst		6	E5	B. Casey	Syst. Anal.	E4	P2	Programmer	18	
E3	P3	Consultant		10	E6	L. Chu	Elect. Eng.	E1	P1	Manager	12	
E3	P4	Engineer		48	E6	L. Chu	Elect. Eng.	E2	P1	Analyst	24	
E4	P2	Programmer		18	E6	L. Chu	Elect. Eng.	E2	P2	Analyst	6	
E5	P2	Manager		24	E6	L. Chu	Elect. Eng.	E3	P3	Consultant	10	
E6	P4	Manager		48	E6	L. Chu	Elect. Eng.	E3	P4	Engineer	48	
E7	P3	Engineer		36	E6	L. Chu	Elect. Eng.	E4	P2	Programmer	18	
E7	P5	Engineer		23	E6	L. Chu	Elect. Eng.	E5	P2	Manager	24	
E8	P3 Manager			40	\ldots							

Types of Join

- θ-join
- The formula F uses operator θ
- Equi-join
- The formula F only contains equality
- $R \bowtie_{R . A=S . B} S$

Natural join

- Equi-join of two relations R and S over an attribute (or attributes) common to both R and S and projecting out one copy of those attributes
- $R \bowtie S=\Pi_{R \cup S} \sigma_{F}(R \times S)$

Natural Join Example

EMP

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng
E2	M. Smith	Syst. Anal.
E3	A. Lee	Mech. Eng.
E4	J. Miller	Programmer
E5	B. Casey	Syst. Anal.
E6	L. Chu	Elect. Eng.
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal.

PAY

TITLE	SALARY
Elect. Eng.	55000
Syst. Anal.	70000
Mech. Eng.	45000
Programmer	60000

EMP \bowtie PAY

ENO	ENAME	TITLE	SALARY
E1	J. Doe	Elect. Eng.	55000
E2	M. Smith	Analyst	70000
E3	A. Lee	Mech. Eng.	45000
E4	J. Miller	Programmer	60000
E5	B. Casey	Syst. Anal.	70000
E6	L. Chu	Elect. Eng.	55000
E7	R. Davis	Mech. Eng.	45000
E8	J. Jones	Syst. Anal.	70000

Join is over the common attribute TITLE

Types of Join

- Outer-Join

- Ensures that tuples from one or both relations that do not satisfy the join condition still appear in the final result with other relation's attribute values set to NULL
- Left outer join $\lesssim \searrow$
- Right outer join \bowtie -
- Full outer join \triangle

Division (Quotient)

Given relations

- R of degree $k_{1}\left(R=\left\{A_{1}, \ldots, A_{k_{1}}\right\}\right)$
- S of degree $k_{2}\left(S=\left\{B_{1}, \ldots, B_{k_{2}}\right\}\right)$

Let $A=\left\{A_{1}, \ldots, A_{k_{1}}\right\}$ [i.e., $\left.R(A)\right]$ and $B=\left\{B_{1}, \ldots, B_{k_{2}}\right\}$
[i.e., $S(B)$] and $B \subseteq A$.
Then, $T=R \div S$ gives T of degree $k_{1}-k_{2}$ [i.e., $T(Y)$ where $Y=A-B]$ such that for a tuple t to appear in T, the values in t must appear in R in combination with every tuple in S.

Division (cont'd)

R		s	
X	Y	X	
x1	y1	$\times 1$	
x2	y1	x2	
x 3	y1	x3	$\mathrm{T}_{1} \leftarrow \Pi_{\mathrm{Y}}(\mathrm{R})$
x4	y1		$\mathrm{T}_{2} \leftarrow \Pi_{\mathrm{Y}}\left(\left(\mathrm{S} \times \mathrm{T}_{1}\right)-\mathrm{R}\right)$
x1	y2		$\mathrm{T} \leftarrow \mathrm{T}_{1}-\mathrm{T}_{2}$
x3	y2		
x2	y3	$\stackrel{T}{4}^{\text {Y }}$	
x3	y3	Y	
x4	y3	y1	
x 1	y4	y4	
x2	y4		
$\times 3$	y 4		

Division - Formally

Given relations

- R of degree $k_{1}\left(R=\left\{A_{1}, \ldots, A_{k_{1}}\right\}\right)$
- S of degree $k_{2}\left(S=\left\{B_{1}, \ldots, B_{k_{2}}\right\}\right)$

Division of R by S (given , $\left\{B_{1}, \ldots, B_{k_{2}}\right\} \subseteq\left\{A_{1}, \ldots, A_{k_{1}}\right\}$)

$$
\begin{aligned}
R \div S= & \left\{t\left[\left\{A_{1}, \ldots, A_{k_{1}}\right\}-\left\{B_{1}, \ldots, B_{k_{2}}\right\}\right] \mid\right. \\
& \forall u \in S \exists v \in R(v[S]=u \wedge v[R-S]=t)\}= \\
& \Pi_{R-S}(R)-\Pi_{R-S}\left(\left(\Pi_{R-S}(R) \times S\right)-R\right)
\end{aligned}
$$

$R \div S$ results in a relation of degree $\left(k_{1}-k_{2}\right)$ and consists of all ($k_{1}-k_{2}$)-tuples t such that for all k_{1}-tuples u in S, the tuple $t u$ is in R.

Division Example

EMP

ENO	PNO	PNAME	BUDGET
E1	P1	Instrumentation	150000
E2	P1	Instrumentation	150000
E2	P2	Database Develop.	135000
E3	P1	Instrumentation	150000
E3	P4	Maintenance	310000
E4	P2	Instrumentation	150000
E5	P2	Instrumentation	150000
E6	P4	Maintenance	310000
E7	P3	CAD/CAM	250000
E8	P3	CAD/CAM	250000
E3	P2	Database Develop.	135000
E3	P3	CAD/CAM	250000

PROJ

PNO	PNAME	BUDGET
P1	Instrumentation	150000
P2	Database Develop.	135000
P3	CAD/CAM	250000
P4	Maintenance	310000

| ENO \div PROJ |
| :---: | :---: |
| E3 |

Example Queries

Emp (Eno, Ename, Title, City) (note we added City)
Project(Pno, Pname, Budget, City) (note we added City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

List names of all employees.

- $\Pi_{\text {Ename }}(\mathrm{Emp})$

■ List names of all projects together with their
budgets.

- $\Pi_{\text {Pname,Budget }}($ Project $)$

Example Queries

Emp (Eno, Ename, Title, City) (note we added City)
Project(Pno, Pname, Budget, City) (note we added City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

■ Find all job titles to which at least one employee has been hired.

```
- \(\Pi_{\text {Title }}(\mathrm{Emp})\)
```

- Find the records of all employees who work in

Toronto.

- $\sigma_{\text {City='Toronto }}$ (Emp)

Example Queries

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)
■ Find all cities where either an employee works or a project exists.

- $\Pi_{\text {City }}($ Emp $) \cup \Pi_{\text {City }}($ Project $)$

■ Find all cities that has a project but no employees who work there.

- $\Pi_{\text {City }}($ Project $)-\Pi_{\text {City }}($ Emp $)$

Example Queries

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

- Find the names of all projects with budgets greater than $\$ 225,000$.
- $\Pi_{\text {Pname }}\left(\sigma_{\text {Budget }>225000}(\right.$ Project $\left.)\right)$
- List the names and budgets of projects on which employee E1 works.
- $\Pi_{\text {Pname, Budget }}\left(\right.$ Project $\bowtie\left(\sigma_{\text {Eno='E1 }},(\right.$ Works $\left.\left.)\right)\right)$
- $\Pi_{\text {Pname, Budget }}\left(\sigma_{\text {Emp.Eno=Works.Eno }}\left(\right.\right.$ Project $\times \sigma_{\text {Eno='El }}$, (Works)))

Example Queries

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

- Find the name of all the employees who work in a city where no project is located.
- $\Pi_{\text {Ename }}\left(E m p \bowtie\left(\Pi_{\text {City }}(\right.\right.$ Emp $)-\Pi_{\text {City }}($ Project $\left.)\right)$

■ Find all the cities that have both employees and projects.

- $\Pi_{\text {City }}($ Emp $) \cap \Pi_{\text {City }}($ Project $)$
- Find all the employees who work on every project.
- $\Pi_{\text {Eno, Pno }}($ Works $) \div \Pi_{\text {Pno }}$ (Project)

Example Queries

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

Find the names and budgets of all projects who employ programmers.

- $\Pi_{\text {Pname,Budget }}\left(\right.$ Project $\bowtie W$ Works $\bowtie \sigma_{\text {Title= }}$ Programmer $($ Emp $\left.)\right)$

List the names of employees and projects that are co-located.

- $\Pi_{\text {Ename, Pname }}($ Emp \bowtie Project $)$

Relational Calculus

Instead of specifying how to obtain the result, specify what the result is, i.e., the relationships that is supposed to hold in the result.

- Based on first-order predicate logic.
- symbol alphabet
" \quad + logic symbols (e.g., \Rightarrow, \neg)
- a a set of constants
- a a set of variables
- a a set of n-ary predicates
** a set of n-ary functions
- \quad parentheses
- expressions (called well formed formulae (wff)) built from this symbol alphabet.

Types of Relational Calculus

According to the primitive variable used in specifying the queries.

- tuple relational calculus
- domain relational calculus

Tuple Relational Calculus

- The primitive variable is a tuple variable which specifies a tuple of a relation. In other words, it ranges over the tuples of a relation.
■ In tuple relational calculus queries are specified as

$$
\{t \mid F(t)\}
$$

where t is a tuple variable and F is a formula consisting of the atoms and operators. F evaluates to True or False.
t can be qualified for only some attributes: $t[A]$

Tuple Relational Calculus

- The atoms are the following:
(1) Tuple variables

Nu*) If the relation over which the variable ranges is known, the variable may be qualified by the name of the relation as $R . t$ or $R(t)$.
(2) Conditions

N $s[A] \theta t[B]$, where s and t are tuple variables and A and B are components of s and t, respectively; $\theta \in\{<,>,=, \neq, \leq, \geq\}$.
Specifies that component A of s stands in relation θ to the B component of t (e.g., s [SALARY] $>t$ [SALARY]).
Nu* $S[A] \theta c$, where s, A and θ are as defined above and c is a constant. For example, $s[\mathrm{NAME}]=$ "Smith".

Tuple Relational Calculus

- A formula F is composed of
- atoms
- Boolean operators \wedge, \vee, \neg
- existential quantifier \exists
- universal quantifier \forall

Formation rules:

- Each atom is a formula.
- If F and G are formulae, so are $F \wedge G, F \vee G, \neg F$, and $\neg G$.
- If F is a formula, so is (F).
- If F is a formula and t is a free variable in F, then $\exists t(F)$ and $\forall t(F)$ are also formulae. These can also be written as $\exists t F(t)$ and $\forall t F(t)$
- Nothing else is a formula.

Safety of Calculus Expressions

- Problem:

- the size of $\{t \mid F(t)\}$ must be finite.
- $\{t \mid \neg t \in R\}$ is not finite

- Safety:

- A query is safe if, for all databases conforming to the schema, the query result can be computed using only constants appearing in the database or the query itself.
- Since database is finite, the set of constants appearing in it is finite as well as the constants in the query; therefore, the query result will be finite

Example Queries

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

List names of all employees.
$\{t[$ Ename $] \mid t \in \mathrm{Emp}\}$
■ List names of all projects together with their
budgets.
$\{<t[$ Pname $], t[$ Budget $]>\mid t \in$ Project $]\}$

Example Queries

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

■ Find all job titles to which at least one employee has been hired.
$\{t[$ Title $] \mid t \in \mathrm{Emp})\}$
■ Find the records of all employees who work in Toronto.
$\{t \mid t \in$ customer $\wedge t[$ City $]=$ 'Toronto' $\}$

Example Queries

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)
Find all cities where either an employee works or a project exists. $\{t[$ City $] \mid t \in \operatorname{Emp} \vee \exists s(s \in$ Project $\wedge t[$ City $]=s[$ City $])\}$ $\{t[$ City $] \mid t \in$ Project $\vee \exists s(s \in \mathrm{Emp} \wedge t$ [City] $=s$ [City] $)\}$
■ Find all cities that has a project but no employees who work there. $\{t[$ City $] \mid t \in$ Project $\wedge \neg \exists s(s \in \operatorname{Emp} \wedge t[$ City $]=s[$ City $])\}$

Example Queries

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)

■ Find the names of all projects with budgets greater than $\$ 225,000$.
$\{t[$ Pname $] \mid t \in$ Project $\wedge t[$ Budget $]>225000\}$

- List the names and budgets of projects in which employee E1 works.
$\{<t[$ Pname $], t[$ Budget $]>\mid$
$t \in$ Project $\wedge \exists s(s \in$ Works $\wedge t[$ Pname $]=s[$ Pname $] \wedge$ s [Eno]='E1') $\}$

Tuple Calculus and Relational Algebra

■ THEOREM: Safe relational calculus and algebra are equivalent in terms of their expressive power.

- This is called relational completeness.
- This does not mean all useful computations can be performed
(-4 Aggregation, counting, transitive closure not specified
- Basic Correspondence

Algebra Operation Calculus Operator

Π	\exists
σ	$x \theta$ constant
\cup	\vee
\bowtie	\wedge
-	\neg
\div	\forall

Tuple Calculus and Relational Algebra

Π is like \exists "there exists" ...

\div is like \forall "for all" ...
Expressing \div using basic operators
Similar to $\begin{aligned} & R \div S=\Pi_{A}(R)-\Pi_{A}\left(\Pi_{A}(R) \bowtie S-R\right) \\ & \downarrow x F(x)=\neg \quad(\exists x \quad \neg F(x))\end{aligned}$

Domain Relational Calculus

- The primitive variable is a domain variable which specifies a component of a tuple.
\Rightarrow the range of a domain variable consists of the domains over which the relation is defined.
■ Other differences from tuple relational calculus:
- The atoms are the following :
m- Each domain is an atom.
- Conditions which can be defined as follows are atoms :
- $x \theta y$, where x and y are domain variables or constants;
$\uparrow\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \in R$ where R is a relation of degree n and each x_{i} is a domain variable or constant.
- Formulae are defined in exactly the same way as in tuple relational calculus, with the exception of using domain variables instead of tuple variables.

Domain Relational Calculus

The queries are specified in the following form :

$$
\left\{<x_{1}, x_{2}, \ldots, x_{n}>\mid F\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

where F is a formula in which x_{1}, \ldots, x_{n} are the free variables.

Domain Relational Calculus

Emp (Eno, Ename, Title, City)
Project(Pno, Pname, Budget, City)
Pay(Title, Salary)
Works(Eno, Pno, Resp, Dur)
List the names and budgets of projects in which employee E1 works.
$\{<b, c>\mid \exists a, d(<a, b, c, d>\in \operatorname{Project} \wedge \exists e, f, g(<e, a f, f\rangle \in$ Works $\wedge e=$ ' E 1 ')) $\}$

QBE (Query-by-Example) Queries

■ Find the names of all employees

QBE Queries

■ Find the names of projects with budgets greater than $\$ 350,000$.

Emp	Eno	Ename	Title	City	Pay	Title	Salary

Project	Pno	Pname	Budget	City
		P.	>350000	

Works	Eno	Pno	Resp	Dur

QBE Queries

■ Find the name and cities of all employees who work on a project for more than 20 months.

Emp	Eno	Ename	Title	City
	X	P.		P.

Pay	Title	Salary

Project	Pno	Pname	Budget	City

Works	Eno	Pno	Resp	Dur
	x			>20

