
10-1

Problem:

How to maintain

atomicity

durability

properties of transactions

Database Reliability

10-2

Types of Failures

n Transaction failures
l Transaction aborts (unilaterally or due to deadlock)
l Avg. 3% of transactions abort abnormally

n System (site) failures
l Failure of processor, main memory, power supply, …
l Main memory contents are lost, but secondary storage contents are

safe
l Partial vs. total failure

n Media failures
l Failure of secondary storage devices such that the stored data is

lost
l Head crash/controller failure

10-3

Recovery Management -Architecture
n Volatile storage

l Consists of the main memory of the computer system (RAM).
n Stable storage

l Resilient to failures and loses its contents only in the presence of
media failures (e.g., head crashes on disks).

l Implemented via a combination of hardware (non-volatile storage)
and software (stable-write, stable-read, clean-up) components.

Secondary
storage

Stable
database

Read Write

Write Read

Main memory
Recovery
Manager

Database Buffer
Manager

Fetch,
Flush Database

buffers
(Volatile
database)

Transaction commands

10-4

Update Strategies
n In-place update

l Each update causes a change in one or more data values
on pages in the database buffers

n Out-of-place update
l Each update causes the new value(s) of data item(s) to

be stored separate from the old value(s).
l Shadowing

à When an update occurs, don't change the old page, but create a
shadow page with the new values and write it into the stable
database.

à Update the access paths so that subsequent accesses are to the
new shadow page.

à The old page retained for recovery.

10-5

Every action of a transaction must not only
perform the action, but must also write a log
record to an append-only file.

In-Place Update – Database Log

New
stable database

state

Database
Log

Update
Operation

Old
stable database

state

10-6

Logging

n The log contains information used by the recovery
process to restore the consistency of a system.
This information may include
l transaction identifier
l type of operation (action)
l items accessed by the transaction to perform the action
l old value (state) of item (before image)
l new value (state) of item (after image)
l …

10-7

Log Example
T1, begin
T1, x, 99, 100
T2, begin
T2, y, 199, 200
T3, begin
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, begin
T3, abort
T4, y, 200, 50
T5, begin
T5, w, 10, 100
T4, commit

Log head

Log tail

10-8

Why Logging?
Upon recovery:

l all of T1's effects should be reflected in the
database (REDO if necessary due to a failure)

l none of T2's effects should be reflected in the
database (UNDO if necessary)

0 t time

system
crash

T1Begin End

Begin T2

10-9

REDO Protocol

n REDO'ing an action means performing it again.
n The REDO operation uses the log information and

performs the action that might have already executed or
interrupted due to failures.

n The REDO operation generates the new image.

Database
Log

REDO
Old

stable database
state

New
stable database

state

10-10

n UNDO'ing an action means to restore the object to its
before image.

n The UNDO operation uses the log information and
restores the old value of the object.

UNDO Protocol

New
stable database

state

Database
Log

UNDO
Old

stable database
state

10-11

Logging Interface

Read

WriteWrite

Read

Main memory

Recovery
Manager

Database Buffer
Manager

Fetch,
Flush

Secondary
storage

Stable
log

Stable
database

Database
buffers
(Volatile

database)

Log
buffers

W
rite

Rea
d

Log tail

10-12

When to Write Log Records
Into Stable Store?

Assume a transaction T updates a page P
n Fortunate case

l System writes P in stable database
l System updates stable log for this update
l SYSTEM FAILURE OCCURS!... (before T commits)

We can recover (undo) by restoring P to its old state by using
the log

n Unfortunate case
l System writes P in stable database
l SYSTEM FAILURE OCCURS!... (before stable log is updated)

We cannot recover from this failure because there is no log
record to restore the old value.

n Solution: Write-Ahead Log (WAL) protocol

10-13

Write–Ahead Log Protocol
n Notice:

l If a system crashes before a transaction is committed,
then all the operations must be undone. Only need the
before images (undo portion of the log).

l Once a transaction is committed, some of its actions
might have to be redone. Need the after images (redo
portion of the log).

n WAL protocol :
¶ Before a stable database is updated, the undo portion

of the log should be written to the stable log

· When a transaction commits, the redo portion of the
log must be written to stable log prior to the updating
of the stable database.

10-14

n Can the Buffer Manager (BM) decide to write some
of the buffer pages being accessed by a transaction
into stable storage or does it wait for Recovery
Manager (RM) to instruct it?

l steal/no-steal decision
l no-steal means RM “pins” (or “fixes”) pages in the buffer

n Does the RM force the BM to write certain buffer
pages into stable database at the end of a
transaction's execution?

l force/no-force decision
n Possible execution strategies:

l steal/no-force
l steal/force
l no-steal/no-force
l no-steal/force

Recovery Manager/Buffer Manager
Interaction

10-15

n Abort
l BM may have written some of the updated pages into

stable database
l RM performs transaction undo (or partial undo)

n Commit
l RM writes an “commit” record into the log.

n Recover
l For those transactions that have both a “begin” and an

“commit” record in the log, a partial redo is initiated by
RM

l For those transactions that only have a “begin” record
in the log, a global undo is executed by RM

Steal/No-Force

10-16

n Abort
l BM may have written some of the updated pages

into stable database
l RM performs transaction undo (or partial undo)

n Commit
l RM issues a flush command to the buffer

manager for all updated pages
l RM writes a “commit” record into the log.

n Recover
l No need to perform redo
l Perform global undo

Steal/Force

10-17

n Abort
l None of the updated pages have been written into stable

database
l Release the fixed pages

n Commit
l RM writes a “commit” record into the log.
l RM sends an unpin command to the BM for all pages

that were previously pinned

n Recover
l Perform partial redo
l No need to perform global undo

No-Steal/No-Force

10-18

n Abort
l None of the updated pages have been written into

stable database
l Release the fixed pages

n Commit (the following have to be done
atomically)
l RM issues a flush command to the BM for all

updated pages
l RM sends an unfix command to the BM for all

pages that were previously fixed
l RM writes a “commit” record into the log.

n Recover
l No need to do anything if page level locking is used
l May have to undo if finer locking is used

No-Steal/Force

10-19

n Shortens the amount of log that need to be
undone or redone when a failure occurs.

n A checkpoint record contains a list of active
transactions.

n Steps:
¶ Write a begin_checkpoint record into the log
· Collect the checkpoint data into the stable

storage
¸ Write an end_checkpoint record into the log

Checkpoints

10-20

Media Failures –
Full Architecture

Read

WriteWrite

Read

Main memory

Local Recovery
Manager

Database Buffer
Manager

Fetch,
Flush

Archive
log

Archive
database

Secondary
storage

Stable
log

Stable
database

Database
buffers

(Volatile
database)

Log
buffers

Write Write

W
rite

Rea
d

