
CS 448/648 Assignment 3 Solutions

1.Consider the following relation scheme for compact discs

CD (Company, Date, CatalogNum, Composer, Track, Group, Artist, Title, Instrument,
Duration) together with the following functional dependencies:
 {Artist} -> {Instrument, Group}
 {Composer, Title, Company} -> {CatalogNum, Track, Duration}
 {CatalogNum} -> {Company, Date}
 {CatalogNum, Title} -> {Composer}
(a) Use Armstrong's axioms to prove formally that this set of functional dependencies
implies that {CatalogNum, Title} -> {Track}. Justify each step of your proof by listing
the reason as given (i.e., the functional dependencies is one of the four given ones) or by
naming which one of augmentation, transitivity, reflexivity, union, decomposition, or
pseudotransitivity was applied.

Solution:
by FD3 {CatalogNum} -> {Company, Date} (1)
by FD4 {CatalogNum, Title} -> {Composer} (2)
augmentation on (1) {CatalogNum, Title} -> {Company, Date, Title} (3)
union on (2) and (3) {CatalogNum, Title} -> {Company, Date, Composer, Title} (4)
by decomposition on (4) {CatalogNum, Title} -> {Company, Composer, Title} (5)
by FD2 {Composer, Title, Company} -> {CatalogNum, Track, Duration} (6)
by transitivity on (5) and (6) {CatalogNum, Title} -> {CatalogNum, Track, Duration} (7)
by decomposition on (7) {CatalogNum, Title} -> {Track}

(b) Give an example of a relation instance for CD having two rows and showing that the
dependency {Title, Company} -> {CatalogNum} need not hold when the four given
functional dependencies do

Solution:
CD (Company1, Date1, Catalog1, Composer1, Track1, Group1, Art1, Title1, Instr1,
Dur1)
CD (Company1, Date1, Catalog2, Composer2, Track1, Group1, Art2, Title1, Instr1,
Dur1)

The two tuples agree on Title and Company, but don't agree on Catalog Num. As well
FD1 holds because the two tuples don't agree on Author, FD2 because they don't agree on
Composer, FD3 and FD4 because they don't agree on CatalogNum

(c) Calculate the closure of the attribute set {CatalogNum, Title} with respect to the
given functional dependencies.

{CatalogNum, Title}+ incl. {CatalogNum, Title}
(since X+ includes X)
 {CatalogNum, Title}+ incl. {CatalogNum, Title, Composer}
(from FD4)

 {CatalogNum, Title}+ incl. {CatalogNum, Title, Composer, Company, Date}
(from FD3)
 {CatalogNum, Title}+ incl. {CatalogNum, Title, Composer, Company, Date, Track, Duration} (from
FD2)
 {CatalogNum, Title}+ = {CatalogNum, Title, Composer, Company, Date, Track, Duration}
(since no further FDs can be applied)

(d) Find two candidate keys for CD.

Solution: Note that {Artist, Title} must be part of any candidate key because they don't
appear on the right side of any of the functional dependencies. If we add {CatalogNum},
we will construct a key, because from (c) {CatalogNum, Title}+ = {CatalogNum, Title,
Track, Duration, Company, Composer, Date} and from FD1 {Artist}+ = {Instrument,
Group}, i.e. {CatalogNum, Title, Artist} is a key. {Artist, CatalogNum, Title} is a
candidate key because it can not be reduced. Artist and Title cannot be removed because
they don't appear on the right side of any FD. On the other hand, {Artist, Title} is not a
key because {Artist, Title}? {CatalogNum}.

Another candidate key is: {Artist, Title, Composer, Company}. It is a key because from
FD2 {Composer, Title, Company} -> {CatalogNum, Track, Duration} and therefore
{Artist, Title, Composer, Company}->{Artist, Title, CatalogNum}, and as shown
{Artist,Title,CatalogNum} is a key. It is minimal because if Composer or Company are
removed we will not be able to apply FD2, but CatalogNum appears only on the right
hand side of FD2.

(e) In the presence of the given functional dependencies, determine whether the join of
relations conforming to the schemes Recording (CatalogNum, Company, Composer,
Title, Track, Duration, Group, Artist) and Performer (CatalogNum, Group, Artist,
Instrument, Date) is lossless with respect to CD and explain why or why not.

Solution: By a theorem from the textbook the decomposition of R into R1 and R2 is
lossless iff R1n R2 -> R1 or R1n R2 -> R2. In our case R1n R2 = {CatalogNum, Artist,
Group} and R1 ∩ R2 -> R2 (i.e. {CatalogNum, Artist, Group}-> {CatalogNum, Group,
Artist, Instrument, Date}) because {CatalogNum, Artist, Group}+ = {CatalogNum,
Artist, Group, Instrument, Company, Date}, which includes all attributes from R2).
Therefore the join is lossless with respect to CD.

2. Consider the relation scheme R (A, B, C, D, E, F, G) and the set of functional
dependencies {AB->C, BC->D, DEF->G, DG->EF, DG->AB}, where AB is a shorthand
notation representing the set {A, B} etc.

(a) Find a lossless join decomposition into relation schemes, all of which are in Boyce-
Codd Normal Form.

Solution:

The functional dependency BC->D violates the BCNF for R because BC is not a
superkey in R. Decomposing R relative to BC->D, we get the decomposition
R1={B,C,D} R2={A,B,C,E,F,G}. The functional dependency AB->C violates the BCNF
for R1 because AB is not a superkey for R2. Decomposing R2 relative to AB->C we get
the relations: {A,B,C} and {A,B,E,F,G}. The set of relations
{B,C,D},{A,B,C},{A,B,E,F,G} is the resulting decomposition. The relations are in
BCNF because BC and AB are the candidate keys in the first two relations and ABEF
and ABG are candidate keys in the 3rd relation).

If we started with AB->C, we would end up with the same three relations (if we first form
{A,B,C,D} and {A,B,E,F,G}), or perhaps with { {A,B,C}, {A,B,D}, {A,B,E,F,G} }.

(b) Is the resulting set of relation schemes dependency preserving with respect to the
given functional dependencies? Explain why or why not.

Solution:
It is not, the FDs DEF->G, DG->EF and DG-AB are not preserved.

3.Consider the relation scheme Cities (Name, Province, Population,
KilometresFromWaterloo) and queries as follows:

 Q1: select Name, Province
 from Cities
 where Population > 100000
 Q2: select Name, Population, KilometresFromWaterloo
 from Cities
 where Province = ON. and KilometresFromWaterloo < 100
 Q3: select Province, count(city), sum(Population)
 from Cities
 group by Province
(a) Briefly explain how a B+-tree index on Population could be used during processing of
Q1.

Solution:
During query execution we can find first the first entry with key >100000 in the B+ tree.
Then we can follow the next pointers in the B+ tree to traverse the rest of the B+ leaf
nodes comprising the result. The result itself is compiled by reporting the Name and
Province values from the tuples referenced by the data pointers of the traversed leaf
nodes in the B+ tree.

(b) Briefly explain how a clustering index on the pair of attributes (Province,
KilometresFromWaterloo) could be used during processing of Q2.

Solution:

We can look up in the clustered index the first record for which Province = ON and
smallest value for KilometresFromWaterloo, and return the appropriate attribute values
from the block of tuples pointed by this record if KilometresFromWaterloo < 100. We
can then proceed scanning the records from the table in the order they are stored and
return the referenced block of records until we reach a clustering value for which
Province? ON or KilometresFromWaterloo >= 100.

(c) Briefly explain how a hash-table index could be used during processing of Q2.

Solution:
If we have a hash table on Province, then we can calculate the hash function for "ON"
and look up the pointers to the Citie s tuples from the ON entry in the hash table. (In
principle, if we have a hash table on KilometresFromWaterloo, we can use it by
calculating the hash function for the values 0 to 99, and retrieving the corresponding
records; but this would likely be quite expensive.)

(d) If separate B+-tree indexes were available on Province and on
KilometresFromWaterloo, explain which would likely be more selective for processing
Q2.

Solution:
All cities <100 km from Waterloo are in Ontario. Therefore the condition Province=ON
will give us all cities in Ontario and the condition KilometeresFromWaterloo <100 will
give us only cities in Ontario which are less than 100 km from Waterloo. Therefore the
condition KilometresFromWaterloo <100 is more selective.

(e) Briefly exp lain why using a clustering index on Province would be more efficient than
either a hash-table or B+-tree index during processing of Q3.

Solution:
Note that a sequential traversal of a clustered index on Province will give us all records of
the first province (alphabetically), followed by all records from the second province and
so on, i.e. it will give us the Cities grouped by province, which is exactly the information
we need to compute the query. On the other if a hash-table or B+ tree index is available,
more processing has to be done. Note that, even though we find the references to the
tuple for each province as a group, the records themselves are not physically co-located.

