
CS 448/688
Assignment #1 Solution

Notes:
1. There are typically several possible correct solutions for each question (but there are many more

possible incorrect solutions).
2. For simplicity, throughout this solution, the symbol ∞ indicates JOIN.

1.

Ex 4.5.2
a) πename (σaname=’Boeing’ (Employees ∞ Certified ∞ Aircrafts))
b) { t[ename] | e ∈ Employees ∧ ∃c (c ∈ Certified ∧ c[eid] = e[eid] ∧

∃a (a ∈ Aircrafts ∧ a[aid] = c[aid] ∧ a[aname] = ‘Boeing’))}
c)

Employees eid ename salary
 _EID P.ename

Aircraft aid aname cruisingrange
 _AID ‘Boeing’

Certified eid aid
 _EID _AID

Ex 4.5.4
a) People have interpreted this in different ways. Some (including the book’s

authors) have interpreted it as requesting flights that can be flown by some pilot,
in which case a solution is as follows:
πflno (σcruisingrange≥distance ∧ salary > 100,000 (Employees ∞ Certified ∞ Aircrafts ∞ Flights))

The proper answers use division, since you want all the high-paid pilots:
πflno, eid,ename,salary (σcruisingrange≥distance ((Employees ∞ Certified ∞ Aircrafts) × Flight))

 ÷ σsalary > 100,000 (Employees)

(Note that since Flight has no common attributes with the other relations, natural
join will provide the same result as cross-product.)

b) For the first form, we get the following:
{ f[flno] | f ∈ Flights ∧ ∃a, c, e (a ∈ Aircraft ∧ c ∈ Certified ∧ e ∈ Employees ∧

a[cruisingrange] ≥ f[distance] ∧ e[salary] > 10000 ∧ a[aid] = c[aid] ∧
e[eid] = c[eid])}

For the second form, we get the following:
{f[flno] | f ∈ Flights ∧ ∀e (e ∈ Employees ∧ e[salary] > 100,000 ∧

∃c (c ∈ Certified ∧ c[eid] = e[eid] ∧
∃a (a ∈ Aircraft ∧ c[aid] = a[aid] ∧ f[distance] ≤ a[cruisingrange])))) }

c)
Employees eid ename salary
 _EID1 >100,000
 _EID2 >100,000

Certified eid aid
 _EID1 _AID

Aircraft aid aname cruisingrange
 _AID _CR

Flight flno from to distance departs arrives
 P.G. _Dist

Conditions
_CR ≥ _Dist
COUNT._EID1 = COUNT._EID2

Ex 4.5.6
a) πeid (Employee) – πE1.eid (ρ(E1,Employees) ∞E1.salary < E2.salary ρ(E2,Employees))
b) { e1[eid] | e1∈ Employees ∧ ∀e2 (e2 ∈ Employees ⇒ e2[salary] ≤ e1[salary])}

or
{e1[eid] | e1∈ Employees ∧ ¬∃e2 (e2 ∈ Employees ∧ e2[salary]> e1[salary])}

c)
Employees eid ename salary
 P. _S1
 _S2

Ex 4.5.8
a) This query requires us to count the number of aircraft each pilot is certified for;

however, the COUNT operation is not provided in the relational algebra. Thus
this query is not expressible in relational algebra.

b) Same as part a), we don’t have the required COUNT operation in tuple relational
calculus, so this query is not expressible in tuple relational calculus.

c) This is possible to express in QBE, but it is tricky to compare the results of
aggregated values. One method is to use an intermediate relation (as described in
Section 6.9 in the text):

Certified eid aid Counts eid num
 G._EID _AID I. _EID COUNT._AID

This defines a new relation and inserts corresponding tuples. Then we can write:

Conditions
S1 = MAX.S2

Counts eid num
 P. _CNT
 _ ALLCNT

Ex 4.5.10
a) We require a SUM operation to do this query, but it is not provided in the

relational algebra, so this query is not expressible in relational algebra.
b) Same as part a), we don’t have the required SUM operation in tuple relational

calculus, so this query is not expressible in tuple relational calculus.
c)

Employees eid ename salary
 _S P.SUM._S

2. Ex 4.4.1
a) This query will produce an empty result or will be declared wrong by the

compiler. This is because the projection of Parts on ‘sid’ does not make sense.

One possibility is to try a direct translation, but insert an impossible condition on
the tuple variable ranging over Parts, as here:

 { s[sname] | s ∈ Suppliers ∧ ∃p (p ∈ Parts ∧ p[color] = ‘red’ ∧ p ∉ Parts ∧
 ∃c (c ∈ Catalog ∧ c[cost] < 100 ∧ c[sid] = s[sid]))}

If we interpret the question as having a typo, and that the projection was meant to
be on ‘pid’, we get:
{ s[sname] | s ∈ Suppliers ∧ ∃p (p ∈ Parts ∧ p[color] = ‘red’ ∧

 ∃c (c ∈ Catalog ∧ c[cost] < 100 ∧ c[sid] = s[sid] ∧ c[sid] = p[pid]))}

b) This cannot be expressed in QBE, as there is no ‘sid’ attribute in the Parts table.
However, if we again treated it as a typo we would have gotten:

Suppliers sid sname address
 _SID1 P._S

Catalog sid pid cost
 _SID1 _PID1 <100

Parts pid pname colour
 _PID1 red

Conditions
CNT = MAX.ALLCNT

Ex 4.4.3
a) { s[sname] | s ∈ Suppliers ∧ ∃p (p ∈ Parts ∧ p[color] = ‘red’ ∧

∃c (c ∈ Catalog ∧ c[cost] < 100 ∧ c[pid] = p[pid] ∧ s[sid] = c[sid])) ∧
∃p2 (p2 ∈ Parts ∧ p2[color] = ‘green’ ∧
 ∃c2 (c2 ∈ Catalog ∧ c2[cost] < 100 ∧ c2[pid] = p2[pid] ∧
 ∃s2 (s2 ∈ Supplies ∧ s2[sid] = c2[sid] ∧ s[sname] = s2[sname]))) }

b)
Suppliers sid sname address
 _SID1 P._S
 _SID2 _S

Catalog sid pid cost
 _SID1 _PID1 <100
 _SID2 _PID2 <100

Parts pid pname colour
 _PID1 red
 _PID2 green

Ex 4.4.5
a) { s[sname] | s ∈ Suppliers ∧ ∃p (p ∈ Parts ∧ p[color] = ‘red’ ∧

∃c (c ∈ Catalog ∧ c[cost] < 100 ∧ c[pid] = p[pid] ∧ s[sid] = c[sid])) ∧
∃p2 (p2 ∈ Parts ∧ p2 [color] = ‘green’ ∧
 ∃c2 (c2 ∈ Catalog ∧ c2[cost] < 100 ∧ c2[pid] = p2[pid] ∧
 ∃s2 (s2 ∈ Supplies ∧ s2[sid] = c2[sid] ∧ s[sname] = s2[sname] ∧

s[sid] = s2[sid]))) }
b)

Suppliers sid sname address
 _SID P.

Catalog sid pid cost
 _SID _PID1 <100
 _SID _PID2 <100

Parts pid pname colour
 _PID1 red
 _PID2 green

3.

a) π ENAME,RESP (σDUR>12 (EMP ∞ WORKS))
b) π PNAME,RESP (σ DUR>12 ∨ BUDGET > 20000 (WORKS ∞ PROJ))
c) π PNAME,ENAME (EMP ∞ PROJ ∞ (π ENO,PNO (WORKS) –

π ENO,PNO (ρ(A,WORKS) ∞(A.RESP = B.RESP ∧ A.DUR< B.DUR) ρ(B,WORKS))))

4.
a) Note that we used a different notation to fit everything on one page.

ID
start_time
end_time

TIME_SLOT

program_slot
N M

name
genre
intended_audience
rating

TV_PROGRAM

appears_on
N

M

name
date_of_birth
sex

PERSON

ACTOR DIRECTOR

stars_in

has_exclusive

directs

N

N

N M

1

1
o

owner

INDEP_CHANNEL

d

name

NETWORK

NETWK_CHANNEL

is_part_of

N

1

number
city

TV_CHANNEL

Note: There is an additional unstated constraint that the time slots
related to each TV channel must be pairwise non-overlapping.

b) Note: Primary keys are underlined and foreign keys are italic

Step 1 - Handling Entities:

TIME_SLOT(ID,start_time,end_time)
TV_CHANNEL(number, city)
TV_PROGRAM(name, genre, intended_audience, rating)
PERSON(name, date_of_birth,sex)
NETWORK(name)

Step 4 - 1:N Relationships

Modify relations to include foreign keys:

TV_PROGRAM(name, genre, intended_audience, rating, director_name: f.k. to

DIRECTOR.name)
ACTOR(name, exclusive_network : f.k. to NETWORK.name)
TV_CHANNEL(number, city, type, owner, network_name: f.k. to NETWORK.name)

Add the constraint that network_name is not null iff type = “network”

Step 5: M:N Relationships

Add further tables:

STARS_IN(program_name: f.k. to TV_PROGRAM.name, actor_name: f.k. to

ACTOR.name)
PROGRAM_SLOT(time_slot : f.k. to TIME_SLOT.ID, channel: f.k. to

TV_CHANNEL.number)

Step 8: Specialization

When we use general specialization for Person we get:

ACTOR(name)
DIRECTOR(name)

Add the constraint that Actor.name and Director.name should be in Person.name

When we use disjoint specialization for the TV_Channel we get:

TV_CHANNEL(number, city, type, owner)

Add the constraint that type is either “network” or “independent”

Step 9: Aggregation

APPEARS_ON(time_slot : f.k. to TIME_SLOT.ID, channel: f.k. to

TV_CHANNEL.number, program_name: f.k. to TV_PROGRAM.name)

Final set of relations:

TIME_SLOT (ID, start_time, end_time)
TV_CHANNEL(number, city, type, owner, network_name)
PROGRAM_SLOT (time_slot, channel)

TV_PROGRAM (name, genre, intended_audience, rating, director_name)
APPEARS_ON (time_slot, channel, program_name)

PERSON (name, date_of_birth, sex)
DIRECTOR (name)
ACTOR (name, exclusive_network)
STARS_IN (program_name, actor_name)

NETWORK (name)

As well as key constraints and foreign key constraints, we also have various domain
constraints (i.e., whatever datatypes we would wish to associate with each attribute) plus
inclusion dependencies between DIRECTOR.name and PERSON.name and between
ACTOR.name and PERSON.name. We also have further constraint that
TV_CHANNEL.network_name is not null iff TV_CHANNEL.type = “network”. (Note
that because of this constraint we could eliminate the attribute TV_CHANNEL.type and
use a test for NULL in TV_CHANNEL.network_name as the subtype discriminator.)

