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Graph Classification
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Graph Classification
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Algorithms for Graph Similarity
and Subgraph Matching

An Application of Boosting to
Graph Classification

Taku Kudo, Eisaku Maeda Yuji Matsumoto
NTT Communication Science Laboratories. Nara Institute of Science and Technology.
2-4 Hikaridai, Seika-cho, Soraku, Kyoto, Japan 8916-5 Takayama-cho, Ikoma, Nara, Japan
{taku, maeda}@cslab.kecl.ntt.co.jp matsu@is.naist.jp
Abstract

This paper presents an application of Boosting for classifying labeled
graphs, general structures for modeling a number of real-world data, such
as chemical compounds, natural language texts, and bio sequences. The
proposal consists of 1) decision stumps that use subgraph as features,
and i1) a Boosting algorithm in which subgraph-based decision stumps
are used as weak learners. We also discuss the relation between our al-
gorithm and SVMs with convolution kernels. Two experiments using
natural language data and chemical compounds show that our method =
achieves comparable or even better performance than SVMs with convo-
lution kernels as well as improves the testing efficiency.
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Graph Classification

Learning Graph-Level Representations with
Recurrent Neural Networks

Yu Jin, Joseph F. JaJa
Department of Electrical and Computer Engineering
Institute for Advanced Computer Studies
University of Maryland, College Park

Ke rn e I Email: yuj@umd.edu, joseph@umiacs.umd.edu
met h O d S A Simple Baseline Algorithm for Graph Classification
Nathan de Lara Edouard Pineau
Telecom ParisTech Telecom ParisTech - Safran
ndelara@enst.fr edouard.pineau@safrangroup.com
Abstract

g q Graph classification has recently received a lot of attention from various fields of
m et h O d S m e-t h O d S machine learning e.g. kernel methods, sequential modeling or graph embedding.
All these approaches offer promising results with different respective strengths

and weaknesses. However, most of them rely on complex mathematics and re-
quire heavy computational power to achieve their best performance. We propose
a simple and fast algorithm based on the spectral decomposition of graph Lapla-
cian to perform graph classification and get a first reference score for a dataset. —
We show that this method obtains competitive results compared to state-of-the-art
algorithms.
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The Comparison Study

Kernel CNN (KCNN)
Deep Graph Kernels (DGK)

graph2vec >> Embedding
Multi-hop Assortativity (MHA)
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Motivation

e Lack of evaluation of graph similarity techniques across categories
e Lack of experimental evaluation regarding multiclass classification

Number of classes in TU Dortmund
(58 datasets)

tU technische universitat
dortmund

You are here:: TU Dortmund > Department of Computer Science > Chair 11: ALGORITHM ENGINEERING > Staff > Christopher Morris > Benchmark

CHAIR 11

Benchmark Data Sets for Graph Kernels
Home
News This page contains collected benchmark data sets for the evaluation of graph kernels. The data sets were
People collected by Kristian KerstingCZ, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion
Library NeumannCZ with partial support of the German Science FoundationC5 (DFG) within the Collaborative

Research Center SEB 8762 “Providing Information by Resource-Constrained Data Analysis”, project
A6 “Resource-efficient Graph Mining”.

Technical Reports

Contact

https://Is11-www.cs.tu-dortmund.de/staff/morris/graph
kerneldatasets
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Kernel CNN (KCNN)

Kernel Graph Convolutional Neural
Networks

Giannis Nikolentzos'®9 | Polykarpos Meladianos?, Antoine Jean-Pierre Tixier!,

Konstantinos Skianis!, and Michalis Va.zirgiannisl'2

! Ecole Polytechnique, Palaiseau, France
{nikolentzos,anti5662,kskianis,mvazirg}@lix.polytechnique.fr
% Athens University of Economics and Business, Athens, Greece
pmeladianos@aueb.gr

Abstract. Graph kernels have been successfully applied to many graph
classification problems. Typically, a kernel is first designed, and then
an SVM classifier is trained based on the features defined implicitly by
this kernel. This two-stage approach decouples data representation from
learning, which is suboptimal. On the other hand, Convolutional Neu-
ral Networks (CNNs) have the capability to learn their own features
directly from the raw data during training. Unfortunately, they cannot
handle irregular data such as graphs. We address this challenge by using
graph kernels to embed meaningful local neighborhoods of the graphs in
a continuous vector space. A set of filters is then convolved with these
patches, pooled, and the output is then passed to a feedforward network.
With limited parameter tuning, our approach outperforms strong base-
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Kernel CNN (KCNN)

Convolutional

Max-pooling Fully-Connected
layer

Network
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Graph Classification: A Comparison Study

Deep Graph Kernels

Pinar Yanardag
Department of Computer Science
Purdue University
West Lafayette, IN, 47906, USA

ypinar@purdue.edu

ABSTRACT

In this paper, we present Deep Graph Kernels, a unified frame-
work to learn latent representations of sub-structures for graphs,
inspired by latest advancements in language modeling and deep
learning. Our framework leverages the dependency information be-
tween sub-structures by learning their latent representations. We
demonstrate instances of our framework on three popular graph
kernels, namely Graphlet kernels, Weisfeiler-Lehman subtree ker-
nels, and Shortest-Path graph kernels. Our experiments on several
benchmark datasets show that Deep Graph Kernels achieve signif-
icant improvements in classification accuracy over state-of-the-art
graph kernels.

PAGE 9

S.V.N. Vishwanathan
Department of Computer Science
University of California
Santa Cruz, CA, 95064, USA
vishy@ucsc.edu

Then, the task is to predict which sub-community a discussion
thread belongs to based on its communication graph. Similarly,
in bioinformatics, one might be interested in the problem of iden-
tifying whether a given protein is an enzyme or not. In this case,
the secondary structure of a protein is represented as a graph where
nodes correspond to atoms and edges represent the chemical bonds
between atoms. If the graph structure of the protein is similar to
known enzymes, one can conclude that the given graph is also an
enzyme [33]. Therefore, computing semantically meaningful simi-
larities between graphs is an important problem in various domains.

Deep Graph Kernels
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Deep Graph Kernels
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Graph Classification: A Comparison Study

graph2vec: Learning Distributed Representations of
Graphs

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui
Chen, Yang Liu and Shantanu Jaiswal
Nanyang Technological University, Singapore
annamala002@Qe.ntu.edu.sg,
{mahinthan,rajasekarv,elhchen,yangliu}@ntu.edu.sg,shantanu004@e.ntu.edu.sg

ABSTRACT

Recent works on representation learning for graph struc-
tured data predominantly focus on learning distributed rep-
resentations of graph substructures such as nodes and sub-
graphs. However, many graph analytics tasks such as
graph classification and clustering require representing en-
tire graphs as fixed length feature vectors. While the afore-
mentioned approaches are naturally unequipped to learn
such representations, graph kernels remain as the most ef-
fective way of obtaining them. However, these graph ker-
nels use handcrafted features (e.g., shortest paths, graphlets,
etc.) and hence are hampered by problems such as poor
generalization. To address this limitation, in this work, we
propose a neural embedding framework named graph2vec
to learn data-driven distributed representations of arbitrary
sized graphs. graph2vec’s embeddings are learnt in an un-
supervised manner and are task agnostic. Hence, they could
be used for any downstream task such as graph classification,

malware [6] and those of chemical compounds could be used
to predict their properties such as solubility and anti-cancer
activity [7].

Graph Kernels and handcrafted features. Graph
kernels are one of the most prominent ways of catering
the aforementioned graph analytics tasks. Graph kernels
evaluate the similarity (aka kernel value) between a pair
of graphs G and G’ by recursively decomposing them into
atomic substructures (e.g., random walks, shortest paths,
graphlets etc.) and defining a similarity (aka kernel) func-
tion over the substructures (e.g., counting the number of
common substructures across G and G’). Subsequently, ker-
nel methods (e.g., Support Vector Machines (SVMs)) could
be used for performing classification/clustering. However,
these kernels exhibit two critical limitations: (1) Many of
them do not provide explicit graph embeddings. This ren-
ders using general purpose ML algorithms which operate
on vector embeddings (e.g., Random Forests (RFs), Neural

PAGE 11
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graph2vec

rooted subgraph 1)

rooted subgraph 2)

Document ID D(.)c2vec Graph ID Grz?ph2vec
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W UNIVERSITY OF
Graph Classification: A Comparison Study PAGE 12 @ WATERLOO



Multi-hop Assortativity (MHA)

Multi-hop assortativities for network classification

LEONARDO GUTIERREZ-GOMEZ*,

Institute for Information and Communication Technologies, Electronics and Applied
Mathematics (ICTEAM), Université catholique de Louvain, Avenue Georges Lemaitre, 4,
1348 Louvain-la-Neuve, Belgium
*Corresponding author: leonardo.gutierrez@uclouvain.be

AND

JEAN-CHARLES DELVENNE

Institute for Information and Communication Technologies, Electronics and Applied
Mathematics (ICTEAM) and Center for Operations Research and Econometrics (CORE),
Université catholique de Louvain, Avenue Georges Lemaitre, 4, 1348 Louvain-la-Neuve,
Belgium
jean-charles.delvenne @uclouvain.be

[Dated 19 November 2018]

Several social, medical, engineering and biological challenges rely on discovering the functionality of
networks from their structure and node metadata, when it is available. For example, in chemoinformatics
one might want to detect whether a molecule is toxic based on structure and atomic types, or discover the
research field of a scientific collaboration network.
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Multi-hop Assortativity (MHA)
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Experimental Evaluation

e RQ1: How can the nature of the graph data (e.g. number of nodes,
average number of edges per node) impact the performance of the
techniques?

e RQ2:Isthere aclear difference in performance when using binary
classification datasets versus using multiclass graph data?

e RQ3:Isthere atechnique that clearly outperforms the others in

terms of performance?

W UNIVERSITY OF
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Microsoft datasets

e Semantic image processing
e Theclass for each graph
corresponds to its semantic

meaning. For example building,

grass, tree, face, car, bicycle

Graph Classification: A Comparison Study
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First-MM dataset

e First-MM stands for Flexible Skill

Acquisition and Intuitive Robot Tasking

for Mobile Manipulation in the Real
World

e The graphsrepresent 3d point
clouds of household objects

Graph Classification: A Comparison Study
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IMDb datasets Reddit datasets

e Movie collaboration graphs e User discussion datasets

e Theclass correspond to the genre of e Binary dataset contains posts from 4
the movie such as Action, Romance, popular subreddits: [AmA, AskReddit,
Comedy, and Sci-Fi TrolIXChromosomes, and atheism

e Multiclass dataset contains posts from
5 subreddits: worldnews, videos,
AdviceAnimals, aww, and
mildlyinteresting

W UNIVERSITY OF
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Experimental Evaluation

FIRSTMM_DB 41 11 1377.27 3074.1|yes no
IMDB-BINARY 1000 2 19.77 96.53 | no no
IMDB-MULT]I 1500 3 13 65.94 | no no
MSRC 9 221 8 40.58 97.94 |yes no
MSRC_ 21 563 20 171.52 198.32 |yes no
REDDIT-BINARY 2000 2 429.63 497.75(no no
REDDIT-MULTI-5k 4999 5 508.52 594.87|no no

UNIVERSITY OF
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Experimental Setup

e Dataset preprocessing

e Code customization

e Selection of initialization parameters
e Graph transformation technique

e Graph Classification

W UNIVERSITY OF
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Evaluation Metrics

e Mean prediction accuracies and standard deviations

e Graph transformation runtime
e Additional storage required for transformed data

W UNIVERSITY OF
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Evaluation Results

e Mean prediction accuracies and standard deviations

Dataset KCNN DGK graph2vec MHA

MSRC 9 87.77 £0.08 87.73 £ 0.01 10.4 £ 6.59 51.63 £ 0.05
MSRC_ 21 87.58 £ 0.03 83.41 £ 0.01 6.67 £ 4 37.95%*0.04

FIRSTMM_ DB 32.5%0.23 60.5 £ 0.04 16 £ 8.94 56 + 0.01
IMDB-BINARY 71 +0.06 64.11 0 69.8 £ 6.06 69.7 £ 0.04
IMDB-MULTI 46.6 £ 0.03 45.55*0 44.8 +2.88 47.53*0.03

REDDIT-BINARY | 77.95 £ 0.05 80 £ 0.17 7095 89 £ 0.02
REDDIT-MULTI-5k | 45.67 £ 0.02 40 £ 0.08 29.5 * 3.88 54.37 £ 0.02

W UNIVERSITY OF
Graph Classification: A Comparison Study PAGE 22 @ WATERLOO



Evaluation Results
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Evaluation Results

e Graph transformation runtime

Dataset KCNN DGK graph2vec MHA
MSRC 9 0.161 min 1.09 hr 1.09 min 0.039 min
MSRC 21 0.638 min 12.72 hr 5.09 min 0.168 min

FIRSTMM_ DB 6.023 min 12.397 min 7.957 min 6.177 min
IMDB-BINARY 0.445 min 1.559 min 2.267 min 0.105 min
IMDB-MULTI 0.407 min 3.906 min 2.232 min 0.11 min
REDDIT-BINARY 1.86 hr 5.44 hr 1.83 hr *Memory error
REDDIT-MULTI-5k 4.66 hr 21.68 hr 6.14 hr *Memory error

W UNIVERSITY OF
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Evaluation Results

e Additional storage required for transformed data

Dataset KCNN DGK graph2vec MHA
MSRC 9 3.36 MB 0.39 MB 6.7 MB 0.03 MB
MSRC_ 21 10.92 MB 2.54 MB 17.1 MB 0.15 MB

FIRSTMM_DB 2.63 MB 0.01 MB 1.2 MB 0 MB

IMDB-BINARY 8.81 MB 8 MB 30.4 MB 0.39 MB

IMDB-MULTI 8.29 MB 18 MB 45.6 MB 0.57 MB
REDDIT-BINARY 140.85 MB 32 MB 60.8 MB 0.79 MB
REDDIT-MULTI-5k| 365.29 MB 199.92 MB 152.1 MB 2 MB

W UNIVERSITY OF
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Potential Extensions

apk2vec: Semi-supervised multi-view representation learning for
profiling Android applications

Annamalai Narayanan®, Charlie Soh*, Lihui Chen, Yang Liu and Lipo Wang
[annamala002, csoh004] @e.ntu.edu.sg, [elhchen, yangliu,elpwang]@ntu.edu.sg
Nanyang Technological University, Singapore

ABSTRACT

Building behavior profiles of Android applications (apps) with holis-
tic, rich and multi-view information (e.g.. incorporating several
semantic views of an app such as API sequences, system calls, etc.)
would help catering downstream analytics tasks such as app cat-
egorization, recommendation and malware analysis significantly
better. Towards this goal, we design a semi-supervised Represen-
tation Learning (RL) framework named apk2vec to automatically
generate a compact representation (aka profile/embedding) for
a given app. More specifically, apk2vec has the three following
unique characteristics which make it an excellent choice for large-
scale app profiling: (1) it encompasses information from multiple
semantic views such as API sequences, permissions, etc., (2) being
a semi-supervised embedding technique, it can make use of labels
associated with apps (e.g., malware family or app category labels)
to build high quality app profiles, and (3) it combines RL and feature
hashing which allows it to efficiently build profiles of apps that
stream over time (i.e., online learning).

The resulting semi-supervised multi-view hash embeddings of
apps could then be used for a wide variety of downstream tasks
such as the ones mentioned above. Our extensive evaluations with
more than 42,000 apps demonstrate that apk2vec’s app profiles
could significantly outperform state-of-the-art techniques in four
app analytics tasks namely, malware detection, familial clustering,
app clone detection and app recommendation.

KEYWORDS
Representation Learning, Graph Embedding, Skipgram, Malware
Detection, App Recommendation

1 TATTDANT IOTTANT

becoming increasingly tough for markets to recommend up-to-
date and meaningful apps that matches users’ search queries, and
(iii) with a significant number of plagiarists and malware authors
hidden among app developers, these markets have been plagued
with app clones and malicious apps.

One could observe that a systematic and deep understanding
of apps’ behaviors is essential to solve the aforementioned issues.
Building high-quality behavior profiles of apps could help in deter-
mining the semantic similarity among the apps, which is pivotal
to addressing these issues. Recent research [23, 24, 29, 32-38] re-
veals that compared to primitive representations of programs (e.g.,
counts of system-calls, Application Programming Interfaces (APIs)
used etc.) graph representations (e.g., Control Flow Graphs (CFGs),
call graphs, etc.) are ideally suited for app profiling, as the latter
retain program semantics well, even when the apps are obfuscated.
Reinforcing this fact, many recent works achieved excellent results
using graph representations along with Machine Learning (ML)
techniques on a plethora of program analytics tasks such as mal-
ware detection [23, 24, 32, 33, 38], familial classification [37], clone
detection [29, 42], library detection [39] etc. In effect, these works
cast their respective program analytics task as a graph analytics
task and apply existing graph mining techniques [33] to solve them.
Typically, these ML algorithms work on vectorial representations
(aka embeddings) of graphs. Hence, arguably, one of the most im-
portant factors that determines the efficacy of these downstream
analytics tasks is the quality of such embeddings.

Besides the choice of graph representations, another pivotal fac-
tor that influences the aforementioned tasks are the features that
could be extracted from them. In the case of app analytics, the
most prominent features in recent literature include API/system-
call sequences observed [23], permissions [27] and information
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Shortest-Path Graph Kernels for Document Similarity

Giannis Nikolentzos

Ecole Polytechnique and AUEB

nikolentzos@aueb.gr

Francois Rousseau
Ecole Polytechnique

rousseau@lix.polytechnique. fr

Polykarpos Meladianos
Ecole Polytechnique and AUEB
pmeladianos@aueb.gr

Michalis Vazirgiannis
Ecole Polytechnique and AUEB
mvazirgRaueb.gr

Yannis Stavrakas
IMIS / RC ATHENA
yannis@imis.athena-innovation.gr

Abstract

In this paper, we present a novel docu-
ment similarity measure based on the def-

inition of a graph kernel between pairs of

documents. The proposed measure takes
into account both the terms contained in
the documents and the relationships be-
tween them. By representing each doc-
ument as a graph-of-words, we are able
to model these relationships and then de-
termine how similar two documents are
by using a modified shortest-path graph
kernel. We evaluate our approach on
two tasks and compare it against several
baseline approaches using various perfor-
mance metrics such as DET curves and
macro-average Fl-score. Experimental re-
sults on a range of datasets showed that
our proposed approach outperforms tradi-
tional techniques and is capable of mea-
suring more accurately the similarity be-
tween two documents.

information shared by two objects (in our case
documents). Determining the similarity between
two documents is not a trivial task. Whether two
documents are similar or different is not always
clear and may vary from application to applica-
tion.

Similarity measures that make use of the vector-
space model (Salton et al., 1975) treat words in a
document as if they were independent of one an-
other, which is not realistic. In fact, words relate
to one another to form meaningful phrases and to
develop ideas. It is known that the human brain
utilizes these relations between words to facilitate
understanding (Altmann and Steedman, 1988). In
general, we assume that two terms are related if
they co-occur together in a small context, typi-
cally a phrase or a window of specific size, which
resulted in n-gram features in many text mining
tasks (an n-gram is a sequence of n terms in this
paper). But n-grams correspond to sequences of
words and thus fail to capture word inversion and
subset matching (e.g., “article about news” vs.
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Discussion
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Appendix

Dataset
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Preprocessing time across methods (seconds)

® KCNN B DGK ® G2V B MHA
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File size across methods (Kilobytes)

B KCNN B DGK ® G2V B MHA
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