
Thusoo et. Al.

Presented by: Manoj Sharma

Hive – A Petabyte Scale Data Warehouse Using
Hadoop

Basis

 Data is everywhere and increasing day by day

PAGE 2

Reference - https://insidebigdata.com/2017/02/16/the-exponential-growth-of-data/

Basis

 Increasing data size ∝ Increased complexity to handle it

 Increased processing times

 Drive for parallel database models.

PAGE 3

RoadMap -

 Hadoop Outline and Challenges

 Hive and its need

 Data Model and Type System

 HiveQL

 Data Storage and access

 System Architecture

 Conclusion & Few Thoughts

PAGE 4

Hadoop Outline

 What is Hadoop ?

 Coordinated distributed parallel processing

of data.

 Actively used by many companies like

Facebook, Yahoo etc.,

PAGE 5

Ref – Trademark logo of haddop inc

Hadoop Outline

 MapReduce is a programming model and an associated implementation for
processing and generating big data sets with a parallel, distributed algorithm on a
cluster.

PAGE 6

Ref - https://www.researchgate.net/figure/The-Hadoop-MapReduce-Pipeline_fig3_310036684

Hadoop Challenges

 HDFS is used to store the data and MR is used to process the data

 MR are set of programs written by users

 No Flexibility – error prone codes, programmer need knowledge of system
architecture.

 At Facebook

- HDFS was providing proper storage abstraction and scaling.

- Most of data was unstructured

 Need for HIVE !!

PAGE 7

HIVE

 Hive was developed by Facebook (around Jan 2007)

 Requisites

- Unstructured data handing

- Faster processing

- Minimum/No user intervention

- Flexible SQL type support

PAGE 8

HIVE

 Query processing engine for HDFS. (Can run as a layer on HDFS)

 HiveQL – Supports queries expressed in SQL like declarative language

 Extensible framework to support customizable file and data formats

PAGE 9

HiveQL

 Subset of SQL queries are supported

 SQL clauses like – FROM, joins -INNER, OUTER, RIGHT OUTER, GROUP BY,

UNION ALL, aggregations etc., are supported

 Example

- SELECT t1.a, t2.b FROM t1 JOIN t2 ON (t1.a = t2.b);

Equality predicates were only supported in a join query

Recent HIVE releases have support for resolving implicit joins

PAGE 10

HiveQL – MR support

 Supports MapReduce based analysis of data

 Example - Canonical word count on a table of documents

FROM (MAP doctext USING 'python wc_mapper.py' AS (word, cnt) FROM docs
CLUSTER BY word) a REDUCE word, cnt USING 'python wc_reduce.py';

Example - Find all the actions in a session sorted by time

FROM (FROM session_table SELECT sessionid, tstamp, data DISTRIBUTE BY
sessionid SORT BY tstamp) a REDUCE sessionid, tstamp, data USING
'session_reducer.sh';

PAGE 11

Data Model and Type System

 Hive provides data abstraction to user.

- abstraction via row and column layout of data (similar to RDBMS tables)

 Supports

- primitive data types – int, float, double, string

- complex types – maps, lists and struct

- nested structures

- provides ‘.’ and ‘[]’ operator support to access attributes of structured datatypes.

Example

CREATE TABLE T(a int, b list<map<string, struct<p1:int, p2:int>>);

PAGE 12

Data Storage

 Tables are logical units in Hive

 Table metadata associates the data in a table to hdfs directories

 Primary data units and their mappings –

Tables – stored in a directory in hdfs

Partitions – stored in the sub-directory of table’s directory

Buckets – stored in a file within the partition’s or table’s directory

Example – Creating a partitioned table

CREATE TABLE test_part(c1 string, c2 int) PARTITIONED BY (ds string, hr int);

PAGE 13

Serialization/DeSerialization (SerDe)

 Tables are serialized and deserialized using default serializers and deserializers in
Hive. Default is LazySerDe

 Custom SerDe can be provided by users.

- customized delimiters, regex support for parsing columns from rows.

 Any arbitrary data format and types encoded can be plugged into Hive

 Example:

add jar /jars/myformat.jar;

CREATE TABLE t2 ROW FORMAT SERDE 'com.myformat.MySerDe';

PAGE 14

File Formats

PAGE 15

 Hadoop files can be stored in different formats

Example –

TextInputFormat for text files, SequenceFileInputFormat for binary files, etc.

 Users can implement their own formats and associate them to a table

 Format can be specified when the table is created and no restrictions are imposed
by Hive

Example –
CREATE TABLE dest(key INT, value STRING) STORED AS INPUTFORMAT

'org.apache.hadoop.mapred.SequenceFileInputFormat' OUTPUTFORMAT
'org.apache.hadoop.mapred.SequenceFileOutputFormat‘;

Hive Components and Architecture

PAGE 16

Query Flow

PAGE 17

Ref - https://cwiki.apache.org/confluence/display/Hive/Design

Query Flow

PAGE 18

 HiveQL statement submitted via the CLI, the web UI or external client using thrift,
odbc or jdbc interfaces.

 Driver first passes the query to compiler – Typical parse, type check and semantic
analysis is done using the metadata

 Compiler generates a logical plan

 It is then optimized through rule based optimizer to generate a DAG of map-
reduce and hdfs tasks

 Execution engine then execute these tasks in the order of their dependencies using
Hadoop

MetaStore

PAGE 19

 System catalog for Hive. Stores all the information about the tables, their
partitions, schemas, columns and types, table locations, SerDe information etc.

 Can be queried or modified using a thrift interface

 This information is stored on traditional RDBMS

 Uses an open source ORM layer called DataNucleus to convert object
representations to relational schema and vice versa

 Scalability of the Metastore server is ensured by making sure no metadata calls are
made from mappers or reducers of a job

 Xml plan files are generated by compiler containing all the runtime information

Query Compiler

 Parser: Uses Antlr to generate abstract syntax tree (AST) for the query

 Semantic Analyser

- Compiler fetches all the required information from metastore

- Verifying column names, type-checking and implicit type conversions are done

- Transforms the AST to an internal query representation – Query Block (QB) tree.

 Logical Plan generator –

- Convert internal query to logical plan – tree of operators or operator DAG.

- Some operators are relational algebra operators like ‘filter’, ‘join’, etc. Some are Hive
specific say, reduceSink operator – occurs at map-reduce boundary.

PAGE 20

Query Compiler

 Optimizer - Contains a chain of transformations to

transform the plan for improved performance

 Walks on the operator DAG and does processing

actions when certain rules or conditions are satisfied

 Five main interfaces involved during the walk - Node,

GraphWalker, Dispatcher, Rule and Processor.

PRESENTATION TITLE PAGE 21

Query Compiler

 Typical Transformations

- Column pruning - only the columns that are needed in the query processing are
actually projected out of the row

- Predicate pushdown - Predicates are pushed down to the scan if possible so that rows
can be filtered early in the processing

- Partition pruning - Predicates on partitioned columns are used to prune out files of
partitions that do not satisfy the predicate

- Map side joins – Small tables in a join are replicated in all the mappers and joined
with other tables. Eg: SELECT /*+ MAPJOIN(t2) */ t1.c1, t2.c1 FROM t1 JOIN t2 ON(t1.c2 =
t2.c2);

- Join reordering – Larger tables are streamed in the reducer and smaller tables are
kept in memory

PRESENTATION TITLE PAGE 22

Query Compiler

 Supports few optimizations

 Repartitioning of data to handle skews in GROUP BY processing

- Most of the data might get sent to few reducers

- Use two-stage map-reduce

Stage one - Random distribution of data to the reducers to compute partial aggregations

Stage two - Partial aggregations are distributed on the GROUP BY columns to the reducers in the second MR
stage

Triggered in Hive by setting a parameter – set hive.groupby.skewindata=true;

 Hash based partial aggregations in the mappers – Hive does hash based partial aggregations within the mappers to
reduce the data sent to the reducers

- This reduces the time spent in sorting and merging data and gives a performance gain.

- Controlled by parameter – hive.map.aggr.hash.percentmemory

PRESENTATION TITLE PAGE 23

Query Plan

PRESENTATION TITLE PAGE 24

 Physical plan generator – Logical plan after
optimization is split into multiple map/reduce and
hdfs tasks

 A Multi-table insert query –

FROM
(SELECT a.status, b.school, b.gender FROM

status_updates a JOIN profiles b ON
(a.userid = b.userid AND a.ds='2009-03-20')) subq1

INSERT OVERWRITE TABLE gender_summary
PARTITION(ds='2009-03-20')

SELECT subq1.gender, COUNT(1) GROUP BY
subq1.gender
INSERT OVERWRITE TABLE school_summary
PARTITION(ds='2009-03-20')
SELECT subq1.school, COUNT(1) GROUP BY
subq1.school;

Execution Engine

 The tasks are executed in the order of their dependencies

 A map/reduce task first serializes its part of the plan into a plan.xml file

 This file is added to the job cache for the task and ExecMapper and ExecReducer
instances are spawned using Hadoop

 Each of these classes executes relevant parts of the DAG

 Final results are stored in a temporary location

 At the end of entire query, final data is either moved to a desired location or
fetched from the temporary location

PRESENTATION TITLE PAGE 25

Related Work

PAGE 26

Recent Work and Performance analysis

PRESENTATION TITLE PAGE 27

Conclusion

 Hive extensively used for large data processing. Example - Facebook, Yahoo

 Easy way to process large scale data

 SQL-like query support

 Flexibility to Hadoop user

 Custom support

PRESENTATION TITLE PAGE 28

Few thoughts

 Why does Hive provide file based data representation rather than block ?

 Can file formats provide – faster access to data (indexable), metadata per line of each file
? What is the feasibility of index based structures.

 Why is Optimizer scope restricted to Rule based ? What can be done to make it cost based
?

 Hive required metastore server to host dictionary data. Can this be a bottleneck ?

 Intermediate result set management. (result sets are flushed to disk and read again. If
cacheable ? What are provisions.)

 Subquery elimination, predicate rewrite feasibility.



PRESENTATION TITLE PAGE 29

References

 Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Zhang, N., Antony, S., Liu,
H., and Murthy, R. 2010. Hive — A petabyte scale data warehouse using Hadoop.
In Proceedings of the International Conference on Data Engineering. 996–1005.

 https://cwiki.apache.org/confluence/display/Hive/Design

 http://www.apache.org/hadoop/hive

PRESENTATION TITLE PAGE 30

https://cwiki.apache.org/confluence/display/Hive/Design

