Hive — A Petabyte Scale Data Warehouse Using
Hadoop

Thusoo et. Al.

Presented by: Manoj Sharma

4 WATERLOO

= Data is everywhere and increasing day by day

i) 10X

faster growth
P\ Q than tradonal
" business data

4478 44 4ZE

There are many sources that predict exponential data growth toward 2020 and
beyond.
Reference - https://insidebigdata.com/2017/02/16/the-exponential-growth-of-data/
PAGE 2

UNIVERSITY OF

WATERLOO

= Increasing data size « Increased complexity to handle it
= Increased processing times

= Drive for parallel database models.

aGE 3 % WATERLOO

= Hadoop Outline and Challenges

Hive and its need

Data Model and Type System
HiveQL

Data Storage and access

System Architecture

Conclusion & Few Thoughts

aGe 4 % WATERLOO

= What is Hadoop ?
= Coordinated distributed parallel processing

of data.
= Actively used by many companies like

Facebook, Yahoo etc.,

Ref — Trademark logo of haddop inc

aGE 5 % WATERLOO

= MapReduce is a programming model and an associated implementation for
processing and generating big data sets with a parallel, distributed algorithm on a

cluster.
Reducers => K,V
Mappers => K.V K % #Partitions
Sort | Grouping ™ Reducer Ib
H |» Mapper [partitioning H
& D
- - Mapper - partitioning ;
Sot M| Grouping ™ Reducer
S ’_Map_p_er | partitioning S
> Mapper [partitioning
\/ Sort | Grouping Reducer |> \/

Ref - https://www.researchgate.net/figure/The-Hadoop-MapReduce-Pipeline_fig3 310036684

aGE 6 % WATERLOO

HDFS is used to store the data and MR is used to process the data

MR are set of programs written by users

No Flexibility — error prone codes, programmer need knowledge of system
architecture.

At Facebook

- HDFS was providing proper storage abstraction and scaling.
- Most of data was unstructured

Need for HIVE !!

aGe 7 % WATERLOO

= Hive was developed by Facebook (around Jan 2007)
= Requisites

- Unstructured data handing

- Faster processing

- Minimum/No user intervention

- Flexible SQL type support

aGE § % WATERLOO

= Query processing engine for HDFS. (Can run as a layer on HDFS)
= HiveQL — Supports queries expressed in SQL like declarative language

= Extensible framework to support customizable file and data formats

aGE o % WATERLOO

= Subset of SQL queries are supported

= SQL clauses like — FROM, joins -INNER, OUTER, RIGHT OUTER, GROUP BY,
UNION ALL, aggregations etc., are supported

= Example
- SELECT t1.a, t2.b FROM t1 JOIN t2 ON (t1.a = t2.b);
Equality predicates were only supported in a join query

Recent HIVE releases have support for resolving implicit joins

AGE 10 % WATERLOO

= Supports MapReduce based analysis of data
= Example - Canonical word count on a table of documents

FROM (MAP doctext USING 'python we_mapper.py' AS (word, cnt) FROM docs
CLUSTER BY word) a REDUCE word, cnt USING 'python wc_reduce.py’;

Example - Find all the actions in a session sorted by time

FROM (FROM session_table SELECT sessionid, tstamp, data DISTRIBUTE BY
sessionid SORT BY tstamp) a REDUCE sessionid, tstamp, data USING
'session_ reducer.sh';

AGE 11 % WATERLOO

Data Model and Type System

« Hive provides data abstraction to user.
- abstraction via row and column layout of data (similar to RDBMS tables)
= Supports
- primitive data types — int, float, double, string
- complex types — maps, lists and struct
- nested structures
- provides ‘.’ and ‘[]’ operator support to access attributes of structured datatypes.
Example

CREATE TABLE T(a int, b list<map<string, struct<pi:int, p2:int>>);

aGE 12 % WATERLOO

= Tables are logical units in Hive

= Table metadata associates the data in a table to hdfs directories

= Primary data units and their mappings —
Tables — stored in a directory in hdfs
Partitions — stored in the sub-directory of table’s directory
Buckets — stored in a file within the partition’s or table’s directory
Example — Creating a partitioned table

CREATE TABLE test_part(c1 string, c2 int) PARTITIONED BY (ds string, hr int);

AGE 13 % WATERLOO

serialization/DeSerialization (SerDe)

= Tables are serialized and deserialized using default serializers and deserializers in
Hive. Default is LazySerDe

= Custom SerDe can be provided by users.
- customized delimiters, regex support for parsing columns from rows.

= Any arbitrary data format and types encoded can be plugged into Hive

= Example:
add jar /jars/myformat.jar;

CREATE TABLE t2 ROW FORMAT SERDE 'com.myformat.MySerDe';

AGE 14 % WATERLOO

File Formats

= Hadoop files can be stored in different formats
Example —
TextInputFormat for text files, SequenceFileInputFormat for binary files, etc.
= Users can implement their own formats and associate them to a table

= Format can be specified when the table is created and no restrictions are imposed
by Hive

Example

CREATE TABLE dest(key INT, value STRING) STORED AS INPUTFORMAT
'org.apache.hadoop.mapred. SequenceFlleInputFormat OUTPUTFORMAT
'org.apache.hadoop.mapred.SequenceFileOutputFormat’;

AGE 15 % WATERLOO

7

{ (Compiler, Optimizer, Executor)

\ t
g e

HADOOP
(MAP-REDUCE + HDFS)

) (s)

< s e B

=i}

AGE 16 % WATERLOO

Query Flow

HIVE HADOOP
2
8: sendResults ~—— 6.1: executeJob) MAP/REDUCE
EXECUTION| 6.2: jobDone JOB TRACKER
ENGINE
6: executePlan e . - J

= @@/

6.3 dfs operfations M-‘RED[‘CE T;'\SM

) TASK TRACKERS TASK TRACKERS
| (MAP) (REDUCE)
1: executeQuery Y - f_:\'
6.1: metaDataOps (MAP REDUCE
Ul DRIVER N— OPERATOR OPERATOR
7: fetchResults TREE TREE
SERDE L - SERDE
\ J | DESERIALIZE ' SERIALIZE ‘ g
- .
-, 2: getPlan 5. cendPlan 1 / 1
———e READS ITES TO HDFS HDFS

3: getMetaData |)] /kh\'\ ‘

COMPILER METASTORE
4: sendMetaData NAME NODE s ™
(. vy
) DATA NODES
i
Ref - https://cwiki.apache.org/confluence/display/Hive/Design 9: fetchResults ’

TY OF

PAGE 17 WATERLOO

Query Flow

= HiveQL statement submitted via the CLI, the web UI or external client using thrift,
odbc or jdbc interfaces.

= Driver first passes the query to compiler — Typical parse, type check and semantic
analysis is done using the metadata

= Compiler generates a logical plan

= It is then optimized through rule based optimizer to generate a DAG of map-
reduce and hdfs tasks

= Execution engine then execute these tasks in the order of their dependencies using
Hadoop

AGE 18 % WATERLOO

= System catalog for Hive. Stores all the information about the tables, their
partitions, schemas, columns and types, table locations, SerDe information etc.

= Can be queried or modified using a thrift interface
= This information is stored on traditional RDBMS

= Uses an open source ORM layer called DataNucleus to convert object
representations to relational schema and vice versa

= Scalability of the Metastore server is ensured by making sure no metadata calls are
made from mappers or reducers of a job

= Xml plan files are generated by compiler containing all the runtime information

AGE 19 % WATERLOO

Query Compiler

= Parser: Uses Antlr to generate abstract syntax tree (AST) for the query
= Semantic Analyser

- Compiler fetches all the required information from metastore

- Verifying column names, type-checking and implicit type conversions are done

- Transforms the AST to an internal query representation — Query Block (QB) tree.
= Logical Plan generator —

- Convert internal query to logical plan — tree of operators or operator DAG.

- Some operators are relational algebra operators like ‘filter’, join’, etc. Some are Hive
specific say, reduceSink operator — occurs at map-reduce boundary.

AGE 20 % WATERLOO

Query Compiler

= Optimizer - Contains a chain of transformations to
transform the plan for improved performance
= Walks on the operator DAG and does processing
actions when certain rules or conditions are satisfied

= Five main interfaces involved during the walk - Node,

GraphWalker, Dispatcher, Rule and Processor.

PRESENTATION TITLE PAGE 21

—#=| node = walker.getNextNode()

=)

v

Initialize walker and dispatcher

v

Y

<z

no

e =
GVSDBIC"-CF.QC".’GIC'II"-Q“l..lCI"\OCCl

v

>

no

processor =
dispatcher.getProcessor(rule)

.

processor. invoxe(noce)

C =)

RSITY OF

ERLOO

C
Query Compiler

= Typical Transformations

- Column pruning - only the columns that are needed in the query processing are
actually projected out of the row

- Predicate pushdown - Predicates are pushed down to the scan if possible so that rows
can be filtered early in the processing

- Partition pruning - Predicates on partitioned columns are used to prune out files of
partitions that do not satisfy the predicate

- Map side joins — Small tables in a join are replicated in all the mappers and joined
with other tables. Eg: SELECT /*+ MAPJOIN(t2) */ t1.c1, t2.c1 FROM t1 JOIN t2 ON(t1.c2 =

t2.c2);

- Join reordering — Larger tables are streamed in the reducer and smaller tables are
kept in memory

W UNIVERSITY OF
PRESENTATION TITLE PAGE 22 @ WATERLOO

Query Compiler

= Supports few optimizations
= Repartitioning of data to handle skews in GROUP BY processing

- Most of the data might get sent to few reducers

- Use two-stage map-reduce

Stage one - Random distribution of data to the reducers to compute partial aggregations

Stage two - Partial aggregations are distributed on the GROUP BY columns to the reducers in the second MR
stage

Triggered in Hive by setting a parameter — set hive.groupby.skewindata=true;

Hash based partial aggregations in the mappers — Hive does hash based partial aggregations within the mappers to
reduce the data sent to the reducers

- This reduces the time spent in sorting and merging data and gives a performance gain.

- Controlled by parameter — hive.map.aggr.hash.percentmemory

PRESENTATION TITLE

AGE 23 % WATERLOO

Query Plan

Physical plan generator — Logical plan after

optimization is split into multiple map/reduce and
hdfs tasks

A Multi-table insert query —

FROM
(SELECT a.status, b.school, b.gender FROM
status_updates a JOIN profiles b ON

(a.userid = b.userid AND a.ds='2009-03-20')) subq1

INSERT OVERWRITE TABLE gender_summary
PARTITION(ds="'2009-03-20'

SELECT subqgi.gender, COUNT(1) GROUP BY

subqi.gender

INSERT OVERWRITE TABLE school_summary
PARTITION(ds='2009-03-20")

SELECT subqi.school, COUNT(1) GROUP BY

subqi.school;

PRESENTATION TITLE PAGE 24

'
Reduce 2

]
\ Map2

' -
Reduce 1

string, 1: _ c
4 ¢
SelectOperator SelectOperator
expressions: [col{0], coff1]] expressions: [colf0], col(1]}
{0: string. 1: bigin{) {0 int, 1: biging] .
A A Reduce 3:
" GroupByOperator " GroupByOperator | "
i e
made: mode:
10: string, 1: biging] [0 int, 1: biging]
i i
ReduceSinkOperator ReduceSinkOperator
partition cois: cof0] partition cois: col{0]
[0 string, 1: bigint] | [cint, 1: bging]) '
[} =: é _Map 3 |
TableScanOperator TableScanOperator
table: tmp1 table: tmp2
{0: string, 1: bigint] [[0z int, 1: bigint])
_________ s U I J——
m] FileSinkOperator
table: tmp1 1able: tmp2
[0: string, 1: bigint] 0:int, 1: bigint]
A A
~ GroupByOperator GroupByOperator |
mﬁﬂlﬂﬂl WMI
mode: hash mode: hash
[0: string, 1: bigint) p:!ru:m
expressions: [co{1), col{4]. colfS])
[0: sting, 1: string, 2: inf]

Mapt [

= The tasks are executed in the order of their dependencies
= A map/reduce task first serializes its part of the plan into a plan.xml file

= This file is added to the job cache for the task and ExecMapper and ExecReducer
instances are spawned using Hadoop

= Each of these classes executes relevant parts of the DAG
= Final results are stored in a temporary location

= At the end of entire query, final data is either moved to a desired location or
fetched from the temporary location

W UNIVERSITY OF
PRESENTATION TITLE PAGE 25 @ WATERLOO

SCOPE: Easy and Efficient Parallel Processing
of Massive Data Sets

Ronnie Chaiken, Bob Jenkins, Per-Ake Larson, Bill Ramsey,
Darren Shakib, Simon Weaver, Jingren Zhou
Microsoft Corporation
{rchaiken, bobjen, palarson, brams, darrens, sweaver, jrzhou}@microsoft.com

ABSTRACT

Compames providing cloud-scale services have an mereasing
need to store and amalyze massive data sets such as search logs
and clsck streams. For cost and performance reasons, processang is
typically done on large clusters of shared-nothing commodity
machines. It is unperative to develop a programmung moded that
hides the complexity of the underlying system but provides flex-
ibility by allowing users to extend functionality to meoet a vanety
of requaremenss

In thes paper, we present a new declwative and extensible scrpt-
mng language, SCOPE (Structured Computations QOptimuzed for
Paraliel Execution), targeted for thas type of massive data analy

sis. The language 1s designed for case of use with no exphcit par-
allchsm, wiule being amenable to efficient paralie]l execution cn
large clusters. SCOPE bormows several features from SQL. Dats is
modeled 2s sets of rows composed of typed columms. The select
statement i retained with mner joms, outer joms, and aggregatson
allowed. Users can casily define thew own functions and imple-
ment ther own versions of operators: extructors (parsing and con-
structing rows from a file), processors (row-wise processng),
reducers (group-wise processing), and combmmers (combming
rows from two inputs), SCOPE supports nestng of expressions
but also allows 3 computation to be specified 2s a senes of steps,
m a manner oflen preferred by programmers, We alswo descnbe
how scrapts are compiled into efficient, paraliel execution plans
and executed on large clusters

1. INTRODUCTION

Intemet compamies store and analyze massive data sets, such as
scarch logs, web content collocted by crawlers, and chek streams
collected from a vanety of web services. Such analysis is becom
ing increasngly valuable for business m a vanety of ways, for
example, to improve service qualaty and support sovel features, 1o
detect changes in patterns over time, and to detect fraudulent ac
vty

Due to the wize of these data sets, trnditional paralle! database
solutsoms can be probibitively expensive. To be abie 1o perform
this type of web-scale analysis m 8 cost-effective manncr, several

Permussion to make igital or hard copaes of portions of thes work e
personal or classroom use 15 granted wittost fov provided that co pes
e oot made or Gsardwsted for profe or commercsal advantage and
that copees hear this notice and the full citation on the first page
Copyright for components of this woe k awned by others than VDS
Eadowment et be mored

Abstracting with ¢ redit is permutied To copy otherwise, to republah
N Dosl aon seTvers of W rededtnibute 10 sty reduires pOoe spexific

compames have deweloped disinbuted dota storzge and
processing systems on large clusters of shared-nothing commodity
servers, mcluding Google's File System [X] | Bagtable [3], Map-
Reduce [S], Hadoop (1], Yaboo!'s Pig system [2] Ask com’s
Neptune [4], and Microsoft"s Dryad [6] A typical cluster conssts
of hundreds or thoesands of commodaty machines coanected vaa 2
hugh-bandwidth network. It s challenging to design a progrm-
ming model that enables wsers to casily write programs that can
efficiently and effectively utihze all resowrces m sach a cluster
and achieve maxamum degree of parallchsm.

The Map-Reduce progranuming model provides a good abstraction
of group-by-aggregation operations over 3 cluster of machines.
The progremmer provides a map function that performs grouping
and a reduce function that performs aggregation. The underlymng
rnen-time system achseves parallelism by partibionmng the data and
processing different partitions concurrently using muitple ma
chanes

However, this model has s own set of hmstations. Users are
forced to map thewr applications to the map-reduce model in order
w achscve pamalichsm. For some appbcations thes cuppmg s
very unsastural Users have o provide smplomentations for the
map and reduce functions, even for sample operations like projec
Bon and selection. Such custom code s crror-prone and hardly
reusable. Maorcover, for complex apphcations that require multiple
stages of map-reduce. there are often many valid evaluation strat
epes and execution orders. Having users implement (potentially
muitsple) map and reduce functions s equivalent o sskmng wsers
specify physical executon plans directly i database systems. The
uwser plans may be suboptumal and lead 1o performance degrads
Bon by onders of magnitude

In this paper, we present 2 new scripting language, SCOPE (Struc
twred Computatsons Optisnered for Paraliel Exocution), targeted
for large-scale data analysis that is under development st Micro.
wit. Many wery we famubiar with relational data and SQL
SCOPE mtentionally builds o this knowledge but with senplafi.
caticns suited for the new execution envircament. Users famular
with SQL requare hitthe or no trmmng o use SCOPE. Like SQL,
data is modeled 23 sets of rows compesed of typed columms
Every rowset has a well-defined schema The SCOPE muntume
provides smplementations of many standard physical operstors,
saving wers from mplementing simlar functiosaly repetitively
SCOPE is being used dasly for & vanety of dsta analysis and dats
muning spplxcatzons masde Macrosoft

SCOPE = a declamtive language. It allows users o focus on the

Pig Latin: A Not-So-Foreign Language for Data Processing

Christopher Olston
Yahoo! Research

Ravi Kumar
Yahoo! Research

ABSTRACT

There 15 a growing need for ad-hoc analysis of extremely
large data sets, especially at internet companses where ino-
vation critically depends on being able to analyze terabytes
of data collected every day. Parallel database products, e g..
Teradata, offer a solution, bat are usually prohibitively ex
pensive at this scale. Besides, many of the people who ana
lyze this data are entrenched procedural programmers, who
find the declarative, SQL style to be unnatural. The success
of the more procedural map-reduce programming model, and
its associated scalable implementations on commaodity hand
ware, is evidence of the above, However, the map-reduce
paradigm is too low-level and rigid, and leads to a great deal
of custom wer code that is bard to maintam, and reuse
We describe a new language called Mg Latin that we have
designed to Bt in a sweet spot between the declarative style
of SQL, and the low.level, procedural style of map-reduce
The accompanying system, Pig, is fully implemented, and
compiles Pig Latin into physical plans that are executed
aver Hadoop, an openasource, map-reduce implementation

We give a few examples of bow engineers at Yahoo!

Are wung
Pig to dramatically reduce the time required for the develop
ment and execution of their data analysis tasks, compared to
using Hadoop directly. We also report on a novel debuagging
environment that comes integrated with Pig, that can lead
to even higher productivity gaine. Pig s an opensource
Apache incubator project, and avallable for general use

Categories and Subject Descriptors:
H.2.3% Database Management: Languages

General Termas: Languages

“olatonyaboo-inc. con

rbrudﬁynwwnc conm
Iulknrmdyma-mc com
‘ravikuna@yahoo~inc . com

«

atonkins@yahoo~inc,com

Benjamin Reed'
Yahoo! Research

Utkarsh Srivastava
Yahoo! Research

Andrew Tomkinsq
Yahoo! Research

1. INTRODUCTION

At a growing number of crganuations, innovation revolves
around the collection and analysis of enormocss data sets
such as web aawls, search logy, and click streams. Inter
net companies such as Amazon, Google, Microsolt, and Ya
hoo! are prime examples. Analysia of this data constitutes
the innermost loop of the product improvement cycle. For
exunple, the engineers who develop search engine ranking
algorithms spend much of their time analyzing search logs
looking for exploitable trends

The sheer size of these data sets dictates that it be stored
and processed on highly paraliel systems, such as shared
nothing clusters. Parallel database products, g, Teradata
Oracle RAC, Netezza, oifer a solution by providing a simple
SQL query interface and hiding the complexity of the phys
ical cluster. These products bowever, can be probibitively
expeusive at web scale. Henides, they wrench programusers
away from their preferred method of analyzing data, narely
writing imperative scripts or code, toward writing declars
tive queries in SQL., which they often find unnatural and
overly restrictive

As evidence of the above, programmers have been ock
ing to the more procedural map reduce |4 programuning
model. A map-reduce program essentially performs a group
by-aggregation in parallel over a cluster of machines. The
programmey provides a map function that dictates how the

grouping is performed, and a redd function that perforns
the aggregation. What is appealing to progrusmsnens about
this model in that there are only two high devel declarative
primitives (map and reduce) to esable paraliel processing
but the rest of the code, Le., the map and reduce functions
can be written in any programming language of cholce, and
without worrying about paralielion

Unfortunately, the mapreduce maodel has its own set of
Bmitations. Its opecmput, twostage data Bow s extremely
rigid. To perform tanks having a different data How, e g
jots or n stages, inelegant workarounds bave to be devined
Also, custom code has to be written for even the most com
mon operations, e.g., projection and Bltering These facton
lend to code that s difficult to rewse ad maintain, snd in
which the semantios of the analysis task are chseured. More

over, the opagque nature of the map and reduce functions

SITY OF

:RLOO

Recent Work and Performance analysis

Major Technical Advancements in Apache Hive : : :
: - Processing Performance on Apache Pig, Apache Hive

Yin Huai Ashutosh Chauhan® Alan Gates* Gunther Hagleitner* Eric N. Hanson and MYSQL Cluster
Owen O'Malley* Jitendra Pandey* Yuan Yuan Rubao Lee Xiaodong Zhang
Ammar Fuad, Alva Erwin, Heru Purmmomo lpung
The Ohio State University *Hortonworks Inc. *Microsoft

Information Technology, Swiss German Universiny

{huai yuanyu, liru zhangl@cse ohio-state.edu Edurown B350 City, Tangerang 15339, Indoresia

i, . . I
‘{ashutosh, gates, ghagleitner, owen, jitendraj@hortonworks.com smrnar. foadiejotodent.sxn.ac. id
ehans@mlcrosoft‘com “alva_erwinfat]yahoo.com
'heru. ipungfat]sgu.sc.id

ABSTRACT

than 100 developers have made techn

Apuche Hive is 2 widely osed data warchouse system for Apache mare than 3000 issues. With as Absiract—MyS0L Cluster is o famouws clustered database that s This paper presents the processing time of Hive, Pig, and
Hadoop, and has been adopted by many organizations for various been sigmificantly upduted by new imnovations and rescurch since el to store and manipalate date. The problem with MySO0L MySOL Cluster on a simple data model with simple queries
th s wahiiakhed Cansr cnmse . 1 - & =} e} - . .

hig data analytics applications. Closely working with many user e was published four years age. We will Cluster is that as _“” datn grows I"_E_"' the time required to yhile the dam is growing Section 3 discusses a proposed
and organizations, we have identified several shorscoming ;'ui';m its muajor echnecal s ancements i this p P'"‘dﬂ; :‘?th:lud '“""::‘l":r‘“d ‘:':,Liu"""l TERNrOen My :" method. Section 4 shows the results and explanations. And
in its file formats. query planning. and query execution e SN W T o Wy meeced. With Tarsop wnc Tive and Th. procesiing tme can B 100 sopginn, section 5 provides a conclusion and possible
: , ™~ : g 05 l 4 Hadoop MapReduce s own dialect of SOL 1o wsers fuster tham MySOL Cluster. In this paper, three dots festers "

&y 1actors crmumng the performance o Ive. In order o make v v = : - - = .|

Hive : e l‘;‘ 2 "“ fy m': l; e mk. ety of pioces and translates duta mamipulstsor queries) to a directed with the same dota model will run simple guerics and to fnd out fusture work.

Ve contimu y salis e requacsts and reguirements o DOess ’

at how many rows Hive or Pig is fuster than MyS0QL Cluster.
The data medel taken from Grouwplens Research Project [12]

DAG

need o

. J—
ing mcreasingly high volumes dats in 2 scalable snd efficient way he '"h‘t Srape II. RELATED WORKS
we have set two goals related to storage and nmtime performance St

: : duce prograns to manipulate data st o Distributed shovwed o result thut Hive & the mest appropriste for this data Hive and Pig are a high-level language for processing data.
fortie s crpmeity el bo eoeelotr it mesevs e s PEowyen ORIWE) model in 2 fon-cost hardware emvironment, Both are used for working with petabyte scale data [S][9].
Qe J‘_d'.‘m__ the existing Sie formuds Second: e sins b Thi umproves the Working at low-scale data can also be done with Hive or Pig.
significantly impeove cluster re omce wilization sad sontin per Keywords Hadoop: Hive: PFig: MyS0L: MySOL Clisters But processing low-scale dafa can consume more lime with
fornsance of Hive by developing 2 haghly optimized query plan T) Processing big data; Hive or Pig rather than using other data F"f‘h-"-'-i\'_”"'_-' -"‘“'rl-‘-*_“f'-'
mer and a highly efficient guery execution en W puper how its duta warchouse layer is designed, implemented such as '."'j" SOL. As the data Brows LilE"-'I- '."'1'.":"”' roquires
we present 2 community-based effort oa technical advancements in and 0 bast wilize the wnderiying duts processing o I INTRODGUCTION more time to process the data undil it reaches a point where
Hive Our performance evalustion shows that these advancements groe op MapRedhice) and ”,:" 5 luf BN N N S Hadoop s & popular open-source implementation of Hive or Pig is faster than MySOL.
provide signibcant improvements ca storage efficiency and query WIREOUSlY Sy FeREECEERs GF RCTRING ICTEmIng'Y | MapReduce that is used by academics, goverments, and But when exactly do users need (o change from MySOL o
exevution performznce. This paper also shows how academic re ‘““ "'(*"‘“l - ’A‘;‘“‘"“ o "" l" psxcloee ;l“li"""'-l" ” indusirial organizations. Hadoop can be used for sioring large Hive or Pig for a faster processing time? This research
search lays a foundution for Hive to improve its daily operatiosn o 1)‘ e e i ““"“"‘" N R s daia and for processing data such as data mining, repori indicates to users when they can switch 1o Hive or Pig as their
" 5 ..,,,_.,',”_ ‘:,,-‘A',A:., . both T.,‘ p ' :',J_.k-__,_‘ generation, file analysis, web indexing, and bicinformatic TOWs of data become bigger. This test is done in a low-cost
Categories and Subject Descriptors access. Secomd, Hive should be able 10 generate highly optimizad research [2]. hardware environment.
1.2 [Database Management]: Systems query and execute them using 3 query execution moded that MySOL Cluster is a MyS0QL server with one or more data _
utilizes handware resources well storages and management servers ts configure the cluster and [1. FROPOSED METHOD
Kevwords Closely working with many data |-:_p|i-:u|:u'-n. MySOL _-L']u:.h;r provides w_ggg.o_,]'|I.n.:lc..fll."[hrc|.' aspects that will determine the result: 1) the
’ development communay has availability fo the data. MySOL Cluster is designed for data set file size (how many rows); 2) query statements; 3)
Databases; Data Warehouse, Hadoop; Hive, MapReduce file formats, query planming, and query esecution distributed node architecture with no single point of failure, It query average time. There are three data sets with the same
determine performance of querses submitied o Hive comsists of multiple nodes that are distributed across machines data model. The first data set is called mll00k {movie lens

I, l\lR()')l ("ll()N we present 4 commmunety-bused effort on sdkdressang to make sure the system can 'l-'-l.'IfL. EVEn if case a node hav |f|g HH:III_II,II,I TOAWE) contaming a total of I“—?,.;Hﬂ rows. The second | T Y o F
Apache Hive is a dats warehous sem for Apuche Hadoop || shortcomengs with y al.A,th and w A;-J,‘h basis from several a problem such as network failure [11] data set is called mllm containing a total of 1075611 rows. a OO
\ e s ot waredn ¢ syvies (s e Hadooy acae C PENEaIY " —— st 30 f b 5 . i Nas N S " x il P
N bon been wid in saticen 10 mamage and process o . R — ;’ 2 o Apache Hive and Apache Pig are open source programa for The last data set is called mllOm containing a total of L
fecord Colummnar Frie (CNRA

L. A new fle format, Optarmze

analyzing large data sets in a high-level language. Apache Pig 10,069,372 rows.
st st o afiic 1 is a simple query algebra that lets the user declare data
Kot X2 2 RELTEP o S o A tansfomation o files or erouns of files. Hive i3 data

large volumes of dats, such as cBay Spotaly

Facebook. Linke File). has been added

Taobao, Tencent, and Yahoo! As an s sowrce project, Hive has

A. Hadoop Environment

¢ wechniwal devels winhne with »

Hive extensively used for large data processing. Example - Facebook, Yahoo

Easy way to process large scale data

SQL-like query support

Flexibility to Hadoop user

Custom support

W UNIVERSITY OF
PRESENTATION TITLE PAGE 28 @ WATERLOO

Few thoughts

= Why does Hive provide file based data representation rather than block ?

= Can file formats provide — faster access to data (indexable), metadata per line of each file
? What is the feasibility of index based structures.

= Why is Optimizer scope restricted to Rule based ? What can be done to make it cost based
?

= Hive required metastore server to host dictionary data. Can this be a bottleneck ?

= Intermediate result set management. (result sets are flushed to disk and read again. If
cacheable ? What are provisions.)

= Subquery elimination, predicate rewrite feasibility.

W UNIVERSITY OF
PRESENTATION TITLE PAGE 29 @ WATERLOO

= Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Zhang, N., Antony, S., Liu,
H., and Murthy, R. 2010. Hive — A petabyte scale data warehouse using Hadoop.
In Proceedings of the International Conference on Data Engineering. 996—1005.

= https://cwiki.apache.org/confluence/display/Hive/Design

= http://www.apache.org/hadoop/hive

W UNIVERSITY OF
PRESENTATION TITLE PAGE 30 @ WATERLOO

https://cwiki.apache.org/confluence/display/Hive/Design

