ABSTRACT

Sliding window analytics is often used in distributed data-parallel computing for analyzing large streams of continuously arriving data. When pairs of consecutive windows overlap, there is a potential to update the output incrementally, more efficiently than recomputing from scratch. However, in most systems, realizing this potential requires programmers to explicitly manage the intermediate state for overlapping windows, and devise an application-specific algorithm to incrementally update the output.

In this paper, we present self-adjusting contraction trees, a set of data structures and algorithms for transparently updating the output of a sliding window computation as the window moves, while reusing, to the extent possible, results from prior computations. Self-adjusting contraction trees structure sub-computations of a data-parallel computation into a form of a shallow (logarithmic depth) balanced data dependency graph, through which input changes are efficiently propagated in asymptotically sub-linear time.

We implemented self-adjusting contraction trees in a system called Slider. The design of Slider incorporates several novel techniques, most notably: (i) a set of self-balancing trees tuned for different variants of sliding window computation (append-only, fixed-width, or variable-width sliding); (ii) a self-processing mode, where a background pre-processing stage leverages the predictability of input changes to pave the way for a more efficient foreground processing when the window slides; and (iii) an extension of the data structures to handle multiple job workflows such as data flow query processing.

We evaluated Slider using a variety of applications and real-world case studies. Our results show significant performance gains without requiring any changes to the existing application code used for non-incremental data processing.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems

General Terms
Algorithms, Design, Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

1 Introduction

There is a growing use of “big data” systems for the parallel analysis of data that is collected over a large period of time. Either due to the nature of the analysis, or in order to bound the computational complexity of analyzing a monotonically growing data set, applications often resort to a sliding window analysis. In this type of processing, the scope of the analysis is limited to an interval over the entire set of collected data, and, periodically, newly produced inputs are appended to the window and older inputs are discarded from it as they become less relevant to the analysis.

The basic approach for sliding window analytics is to recompute over the entire window from scratch whenever the window slides. Consequently, even small, unchanged data items that remain in the window are reprocessed, thus consuming unnecessary computational resources and limiting the timeliness of results.

One way to improve on the basic approach is to use incremental update mechanisms, where the outputs are updated to accommodate the arrival of new data instead of recomputing them from scratch. Such incremental approaches can be significantly—often asymptotically—more efficient than the basic approach, particularly in cases where the size of the window is large relative to the increment by which the window slides.

The most common way to support incremental computation is to rely on the application programmers to devise an incremental update mechanism [28, 30, 34]. In such an approach, the programmer has to design and implement a dynamic algorithm containing the logic for incrementally updating the output as the input changes. While dynamic algorithms can be efficient, research in the algorithms community shows that they are often difficult to design, analyze, and implement even for simple problems [18, 22, 25, 35]. Moreover, dynamic algorithms are overwhelmingly designed for the single-processor computing model, making them ill-suited for the parallel and distributed systems used in large-scale data analytics.

Given the efficiency benefits of incremental computation, our work answers the following question: Is it possible to achieve the benefits of incremental sliding window analytics without requiring dynamic algorithms? Previous work on incremental computation in batch-processing systems [18, 22, 25] shows that such gains are possible to obtain in a transparent way, i.e., without changing the original (single pass) data analysis code. However, these systems did not leverage the particular characteristics of sliding windows and resort solely to the memoization of sub-computations, which still requires time proportional to the size of the whole data rather (albeit with a small constant) than the change itself.
A quick recap.

Where we are standing in **Big Data** platforms?
Distributed Data Stores:
Tao, HDFS, GFS
A quick recap.

Where we are standing in Big Data platforms?

Main Memory Systems:
Hekaton, Hyper, SAP HANA

- Velocity
- Variety
- Veracity
- Distribution
- Volume
- Value

Distributed Data Stores:
Tao, HDFS, GFS

Main Memory Systems:
Hekaton, Hyper, SAP HANA

4
MapReduce based Data Management:
Spark, LinkedIn ecosystem, Hive
Questions on Data Streams

What are data streams?
Unbounded sequence of values generated in real time

How to manage and process data streams?
Windowed analytics?
From the system’s point of view, it is infeasible to store an entire stream.

From the user’s point of view, recently arrived data may be more useful.

This motivates the use of windows to restrict the scope of continuous queries."
Classifications of Window Models

Direction of movement of endpoints
- Fixed window
- Sliding window
- Landmark (append-only) window

Window size
- Logical or time-based Window
- Physical or count-based window
- Partitioned window
- Predicate window
Re-compute from scratch

Incremental Computations

Dynamic Algorithms

?
A system implementing **self-adjusting contraction trees**, supporting incremental updates **efficiently** and **transparently** in a distributed setting.
Strawman Design

Self-Adjusting Computation Model

+ Data Parallel Programming Model
Self-Adjusting Folding Trees

Variable-width slides
rare changes of window size
Randomized Folding Trees

Variable-width slides
Frequent changes of window size
Rotating Contraction Trees

Fixed-width slides

Split processing
Coalescing Contraction Trees

Append-only Windows
Split processing
Slider Architecture
Conclusions

Idea. Taking advantage of Contraction Trees for efficient update and organized dependency graph (Stable Window Computations)

Performance gains w.r.t computing from scratch and Strawman approach.
Effective optimizations: Split-processing, scheduler modifications, Data-flow query interface, In-memory distributed caching.

Performance Overhead. High runtime overhead for data-intensive applications.
Space Overhead. High space overhead for specific data-intensive applications especially in variable-width windows.

Garofalakis, Minos. “Streaming Analytics in 1st Europe Summer School: Data Science” ACM, 2017
The simple act of paying attention can take you a long way.
-Keanu Reeves

Thanks for your attention!
Discussion

How can garbage collection mechanisms compensate for the space overhead of data-intensive applications?

What are differences between the architectures of Spark Stream and Slider?

Slider supports aggregation functions with associative property. What about other computations?