R-Store: A Scalable Distributed System for Supporting Real-time Analytics

Feng Li, M. Tamer Özsu, Gang Chen, Beng Chin Ooi @ICDE 2014

Presented by: Xiao Meng

CS848, University of Waterloo
Outline

• Background & Motivation
• System Overview
• System Design
• RTOLAP in R-Store
• Evaluation
• Conclusion
• Q & A
Background & Motivation

- **Situation for large scale data processing**
 - Systems classified into 2 categories: OLTP, OLAP
 - Data periodically transport to OLAP through ETL

- **Demand**
 - Time critical decision making (RTOLAP)
 - the freshness of OLAP results
 - Fully RTOLAP entail executing query directly on OLTP data
 - OLAP & OLTP processed by one integrated system
Background & Motivation

- **Problem on simple combination**
 - Resource contention
 - OLTP query blocked by OLAP
 - Inconsistency
 - Long running OLAP may access same data sets several times, updates by OLTP could lead to incorrect OLAP results

- **Solution – R-Store**
 - Resource contention
 - Computation resource isolation
 - Inconsistency
 - Multi-versioning storage system
System Overview – A glimpse of R-Store

- OLAP query data based on timestamp of query submission from multi-versioning storage system
 - Modified HBase as storage
 - Mapreduce job for query execution

- Periodically materialize real-time data into data cube
 - Fully HBaseScan every time is time-consuming
 - Entire table is scanned & shuffled during MR
 - Streaming Mapreduce to maintain data cube
System Overview – R-Store Architecture

OLTP submitted to KV Store
OLAP query processed by
MapReduce – Scan on HBase
Refresh data cube through
streaming MapReduce
MetaStore to generate query
timestamp T Q & metadata
System Design – A Glimpse of HBase
System Design – Storage Design based on HBase

• Extend Scan to 2 versions
 – FullScan for querying data cube
 – IncrementalScan for querying real-time data

• Infinite versions of data to maintain query consistency
 – Compaction to remove stale versions
 – Global compaction
 • Immediately following data cube refresh
 – Local compaction
 • Compact old versions not accessed by any scan process
System Design – IncrementalScan in detail

• **Target:** Find out changes since last data cube materialization

• **Method**
 – Take 2 timestamps as input T_{DC} & T_Q, return the values with largest timestamp before T_{DC} & T_Q

• **Implementations**
 – Naïve: Accessing memstore & storefile in parallel
 – Adaptive: Maintain key modified since last materialization, first scan memstore, scan or random access keys based on cost
System Design – Compaction in detail

- **Global compaction**
 - Similar to Hbase’s default, retain only one version of each key
 - Triggered by data cube’s refresh completion

- **Local compaction**
 - Compacted data stored in different file in case block scan process
 - Files can be removed when not accessed by any scan
 - Triggered when #tuple/#key exceeds threshold
System Design – Data cube

- Define a data cube for “Customer Profiles”
- Dimensions: age, income, buys
System Design – Data cube maintenance

• Re-computation
 – First run
 – FullScan on one region, generate a KV pair for each cuboid in mapper, aggregate & output in reducer

• Incremental Update
 – Consequent runs
 – Propagation step to computes change & update step to update cube
 – Streaming system updates cube inside & periodically materialize it into storage
System Design – HStreaming for cube maintenance

• Each mapper responsible for processing update within a key range
 – Maintain KVs locally, cache hot keys in memory
 – For updates, emit 2 KV pair for each cubiod (+, -)

• Reducer cache the output KV of mapper and invoke reduce every W_r, refresh cube every W_{cube}
System Design – Data Flow of R-Store

1. Updates arrives Hbase-R
2. stream updates to a Hstreaming mapper
3. Reducer periodically materialize local data cube to Hbase-R & notifies Metastore
RTOLAP in R-Store – Query Processing

- Map
 - Tag the values with ‘Q’ ‘+’, ‘-’
- Reduce
 - Do calculation based on aggregation function & three values
Evaluation

- Cluster of 144 nodes
 - Intel X3430 2.4 GHz processor
 - 8 GB of memory
 - 2x500 GB SATA disks
 - gigabit Ethernet

- TPC-H data
Evaluation - Performance of Maintaining Data cube

- Hstreaming with 10 nodes have higher throughput than 40 Hbase-R nodes

- 1.6 billion keys, 1% updated, update algorithm fast enough,
- latency equals to Hbase-R input speed
Evaluation - Performance of RT querying

- Small key range updates scans few data in Hbase-R, process fewer data
Evaluation - Performance of OLTP

(a) Throughput

(b) Latency
Related Work

• Database
 – C-Store(VLDB 05)

• Main-memory database
 – HyPer(ICDE 11), HYRISE(VLDB 10)

• Druid(SIGMOD 14)
Conclusion

- Multi-version concurrent control to support RTOLAP
- Data cube to reduce storage requirement & improve performance
- Streaming system to refresh data cube
- Available at https://github.com/lifeng5042/RStore
Q&A
Backup – OLAP Cube

• A multi-dimensional generalization of a two- or three-dimensional spreadsheet. Hypercube for dataset with more than three d’s.

• Dimensions: Product, time, cities…

• Cells: each cell of the cube holds a number that represents some measure of the business, e.g. sales, profits…

• Slicer: the dimension held constant for all cells so that multi-dimensional information can be shown in a 2D physical space of a spreadsheet.
Backup – OLAP Cube

- Data cube can be viewed as a lattice of cuboids
- The bottom-most cuboid is the base cuboid
- The top-most cuboid (apex) contains only one cell
- How many cuboids in an n-dimensional cube with L levels?

$$T = \prod_{i=1}^{n} (L_i + 1)$$