

Fast Data in the Era of Big Data: Twitter's Real-Time Related Query Suggestion Architecture

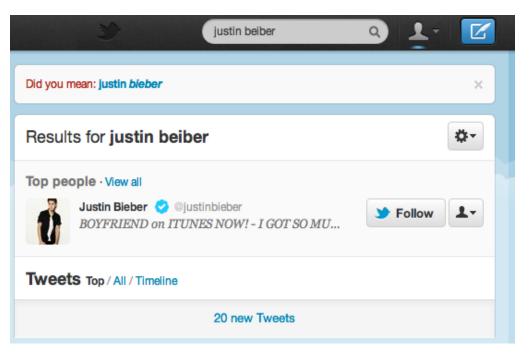
Gilad Mishne, Jeff Dalton, Zhenghua Li, Aneesh Sharma, Jimmy Lin

Presented by: Rania Ibrahim

- Motivation & Background
- Contributions
- Real-Time Query Suggestion
- First Solution
- Second Solution
- Future work
- Conclusion
- Discussion

- Contributions
- Real-Time Query Suggestion
- First Solution
- Second Solution
- Future work
- Conclusion
- Discussion

• Develop a real time query suggestion system



The figures are taken from https://blog.twitter.com/2012/related-queries-and-spelling-corrections-search

- Develop a real time query suggestion system
- Example:
 - When Marissa Mayer was in Google

- Develop a real time query suggestion system
- Example:
 - When Marissa Mayer was in Google

Goal

Provide Relevant Related Query
Suggestions within 10 Minutes of Major
Events

- Motivation & Background
- Contributions
- Real-Time Query Suggestion
- First Solution
- Second Solution
- Future work
- Conclusion
- Discussion

Contributions

- Introduce real time related query suggestion problem
- Explain two solutions:
 - First Solution: using Hadoop
 - Second Solution: using in memory processing engine
- Suggest future work to reduce the gap between big data and fast data

- Motivation & Background
- Contributions
- Real-Time Query Suggestion
- First Solution
- Second Solution
- Future work
- Conclusion
- Discussion

Real Time Query Suggestion

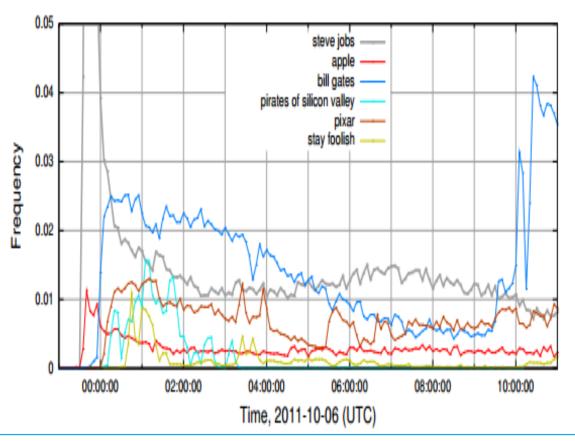
- **Good** related query suggestions provide:
 - Topicality
 - Temporality
- Topicality: capture same topic
- Temporality: capture temporal connection
 - #SCOTUS suggestions: healthcare and #aca
 - Marissa Mayer example

Real Time Query Suggestion

- Time constrain to include news breaks
- When is the best time to make suggestions ?
 - Too early: No enough evidences
 - Too late: User experience

Real Time Query Suggestion

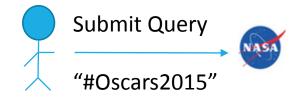
- Steve Jobs died:
 - "steve jobs" becomes 15%
 - "stay foolish" and "apple" †
- Window size:
 - 10 minutes



The figure is taken from the paper "Fast Data in the Era of Big Data: Twitter's Real-Time Related Query Suggestion Architecture"

- Query A and B are seen in same context
 - A and B are related queries
- Context can be:
 - User search session
 - Tweet itself

• User search session



NASA @NASA · 20h .@Interstellar won #Oscars2015 for visual effects. Here's a visual of Earth. No effects. instagram.com/nasa

• User search session

• Tweet: Terms in the tweet are related

- A is before B in time
 - B is interested to users who liked A
- A and B are similar and B has more results
 - B is spelling correction of A
- Measures relatedness between query A and B
- Decays measurement with time

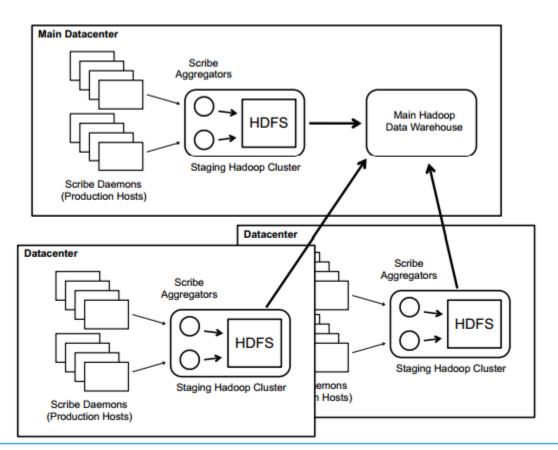
- Motivation & Background
- Contributions
- Real-Time Query Suggestion
- First Solution
- Second Solution
- Future work
- Conclusion
- Discussion

First Why to use Hadoop ?!

- Twitter has robust and production Hadoop cluster
- Twitter has incorporated components on top of Hadoop
 - Pig, Hive, ZooKeeper and Vertica
- Use Oink pig flow manager
- The first version was developed in Pig and Java UDF

- Using pig script to:
 - Aggregate user search session
 - Compute term and co-occurrence statistics
 - Rank related queries and spelling correction
- Frontend loads outputs and serves requests
- Unacceptable latency (several hours!)

- Two bottlenecks
 - Log Import
 - Hadoop



The figure is taken from the paper "Fast Data in the Era of Big Data: Twitter's Real-Time Related Query Suggestion Architecture"

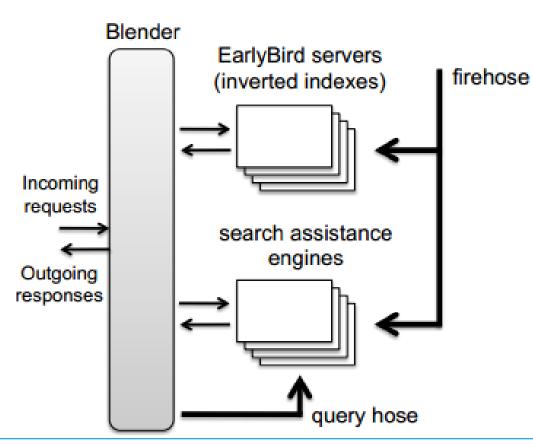
- Hadoop delay
 - Resource contention
 - Mapreduce jobs took 15-20 minutes
 - Stragglers

- Hadoop delay
 - Resource contention
 - Mapreduce jobs took 15-20 minutes
 - Stragglers

Hadoop is not designed for latency sensitive jobs

- Motivation & Background
- Contributions
- Real-Time Query Suggestion
- First Solution
- Second Solution
- Future work
- Conclusion
- Discussion

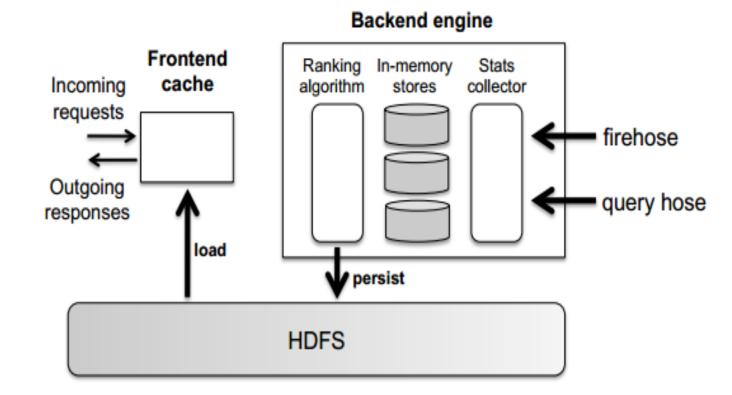
Second Solution



The figure is taken from the paper "Fast Data in the Era of Big Data: Twitter's Real-Time Related Query Suggestion Architecture"

Second Solution

- Every 5 minutes:
 - Results are stored in HDFS
- Cold Restart:
 - Read from HDFS
- Replication



The figure is taken from the paper "Fast Data in the Era of Big Data: Twitter's Real-Time Related Query Suggestion Architecture"

Second Solution (In-Memory Stores)

- Session stores (sliding window):
 - User session: Queries and co-occurrence queries
- Query statistics stores:
 - Query statistics and decay weights
- Query co-occurrence statistics stores:
 - Query pairs statistics
 - Store query before\after in user session

- When new query arrives (Query Path)
 - Update query statistics
 - Add query to sessions store
 - For each previous query in user session & the new query
 - Update query co-occurrence statistics store

- When new tweet arrives (Tweet Path)
 - Retrieve its n-grams
 - Check if they occurred before as queries
 - Repeat query Path for each query

- Decay/Prune Cycles
 - Decay all weights periodically
 - Remove queries and co-occurrence queries <= threshold
 - Remove users sessions with no recent activities

- Ranking Cycles
 - Periodic process to rank queries
 - Uses queries statistics
 - For each query: it generates suggestions

Second Solution (Scalability)

- CPU limitation
 - One server needs to consume query hose and fire hose
 - Turn out not a limitation
- Memory limitation
 - Memory size vs. Coverage

Second Solution (Background Models)

- Previous model limited to temporal coverage
- Solution: Run background process over older data
- For spelling correction:
 - Form pairwise edit distance between all queries
- Results are stored in HDFS
- Frontend cache combines real time & background results

- Motivation & Background
- Contributions
- Real-Time Query Suggestion
- First Solution
- Second Solution
- Future work
- Conclusion
- Discussion

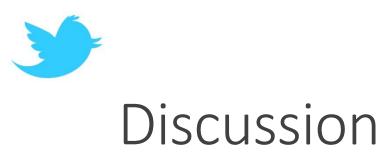
- Automatically perform pruning when memory is needed
- Single unified data platform to deal with real time and slower moving suggestions (fast data + big data)

- Motivation & Background
- Contributions
- Real-Time Query Suggestion
- First Solution
- Second Solution
- Future work
- Conclusion
- Discussion

Conclusion

- The paper proposed two solutions for real time related query suggestion
- The first solution was using Hadoop
- The second solution was using in memory approach

Thank you ③ Any Questions



- No experimental results?
- Memory size vs. coverage trade off, how to reduce the gap?
 - A distributed in memory system? (challenges)
- How to decide automatically which data to prune?
- Would sampling help to solve log import bottleneck in first solution ? How ?
- How to use other information like click graph with in memory structures to enhance the ranking?