
Fast Data in the Era of Big Data: Twitter’s Real-
Time Related Query Suggestion Architecture

1

Gilad Mishne, Jeff Dalton, Zhenghua Li, Aneesh Sharma, Jimmy Lin

Presented by: Rania Ibrahim

AGENDA

2

• Motivation & Background
• Contributions
• Real-Time Query Suggestion
• First Solution
• Second Solution
• Future work
• Conclusion
• Discussion

AGENDA

3

• Motivation & Background
• Contributions
• Real-Time Query Suggestion
• First Solution
• Second Solution
• Future work
• Conclusion
• Discussion

Motivation & Background

4

• Develop a real time query suggestion system

The figures are taken from https://blog.twitter.com/2012/related-queries-and-spelling-corrections-search

Motivation & Background

5

• Develop a real time query suggestion system
• Example:

• When Marissa Mayer was in Google

“Marissa Mayer”
Query

“Yahoo”
Query

Motivation & Background

6

• Develop a real time query suggestion system
• Example:

• When Marissa Mayer was in Google

• When Marissa Mayer scheduled for Yahoo CEO

“Marissa Mayer”
Query

“Yahoo”
Query

“Marissa Mayer”
Query

“Yahoo”
Query

Motivation & Background

7

Goal
• Provide Relevant Related Query

Suggestions within 10 Minutes of Major
Events

AGENDA

8

• Motivation & Background
• Contributions
• Real-Time Query Suggestion
• First Solution
• Second Solution
• Future work
• Conclusion
• Discussion

Contributions

9

• Introduce real time related query suggestion problem
• Explain two solutions:

• First Solution: using Hadoop
• Second Solution: using in memory processing engine

• Suggest future work to reduce the gap between
big data and fast data

AGENDA

10

• Motivation & Background
• Contributions
• Real-Time Query Suggestion
• First Solution
• Second Solution
• Future work
• Conclusion
• Discussion

Real Time Query Suggestion

11

• Good related query suggestions provide:
• Topicality
• Temporality

• Topicality: capture same topic
• Temporality: capture temporal connection

• #SCOTUS suggestions: healthcare and #aca
• Marissa Mayer example

Real Time Query Suggestion

12

• Time constrain to include news breaks

• When is the best time to make suggestions ?
• Too early: No enough evidences
• Too late: User experience

Real Time Query Suggestion

13

• Steve Jobs died:
• “steve jobs” becomes 15%
• “stay foolish” and “apple”

• Window size:
• 10 minutes

The figure is taken from the paper “ Fast Data in the Era of Big Data: Twitter’s Real-Time Related Query Suggestion Architecture ”

Real Time Query Suggestion Algorithm

14

• Query A and B are seen in same context
• A and B are related queries

• Context can be:
• User search session
• Tweet itself

Real Time Query Suggestion Algorithm

15

• User search session
Submit Query

“#Oscars2015”

Real Time Query Suggestion Algorithm

16

• User search session

• Tweet: Terms in the tweet are related

Submit Query

“#Oscars2015”

Submit Query

“Interstellar”

Real Time Query Suggestion Algorithm

17

• A is before B in time
• B is interested to users who liked A

• A and B are similar and B has more results
• B is spelling correction of A

• Measures relatedness between query A and B
• Decays measurement with time

AGENDA

18

• Motivation & Background
• Contributions
• Real-Time Query Suggestion
• First Solution
• Second Solution
• Future work
• Conclusion
• Discussion

First Solution (Hadoop)

19

First
Why to use Hadoop ?!

First Solution (Hadoop)

20

• Twitter has robust and production Hadoop cluster
• Twitter has incorporated components on top of Hadoop

• Pig, Hive, ZooKeeper and Vertica
• Use Oink pig flow manager
• The first version was developed in Pig and Java UDF

First Solution (Hadoop)

21

• Using pig script to:
• Aggregate user search session
• Compute term and co-occurrence statistics
• Rank related queries and spelling correction

• Frontend loads outputs and serves requests
• Unacceptable latency (several hours!)

First Solution (Hadoop)

22

• Two bottlenecks
• Log Import
• Hadoop

The figure is taken from the paper “ Fast Data in the Era of Big Data: Twitter’s Real-Time Related Query Suggestion Architecture ”

First Solution (Hadoop)

23

• Hadoop delay
• Resource contention
• Mapreduce jobs took 15-20 minutes
• Stragglers

First Solution (Hadoop)

24

• Hadoop delay
• Resource contention
• Mapreduce jobs took 15-20 minutes
• Stragglers

Hadoop is not designed for
latency sensitive jobs

AGENDA

25

• Motivation & Background
• Contributions
• Real-Time Query Suggestion
• First Solution
• Second Solution
• Future work
• Conclusion
• Discussion

Second Solution

26

The figure is taken from the paper “ Fast Data in the Era of Big Data: Twitter’s Real-Time Related Query Suggestion Architecture ”

Second Solution

27

• Every 5 minutes:
• Results are stored

in HDFS
• Cold Restart:

• Read from HDFS
• Replication

The figure is taken from the paper “ Fast Data in the Era of Big Data: Twitter’s Real-Time Related Query Suggestion Architecture ”

Second Solution (In-Memory Stores)

28

• Session stores (sliding window):
• User session: Queries and co-occurrence queries

• Query statistics stores:
• Query statistics and decay weights

• Query co-occurrence statistics stores:
• Query pairs statistics
• Store query before\after in user session

Second Solution (Data Flow)

29

• When new query arrives (Query Path)
• Update query statistics
• Add query to sessions store
• For each previous query in user session & the new query

• Update query co-occurrence statistics store

Second Solution (Data Flow)

30

• When new tweet arrives (Tweet Path)
• Retrieve its n-grams
• Check if they occurred before as queries
• Repeat query Path for each query

Second Solution (Data Flow)

31

• Decay/Prune Cycles
• Decay all weights periodically
• Remove queries and co-occurrence queries <= threshold
• Remove users sessions with no recent activities

Second Solution (Data Flow)

32

• Ranking Cycles
• Periodic process to rank queries
• Uses queries statistics
• For each query: it generates suggestions

Second Solution (Scalability)

33

• CPU limitation
• One server needs to consume query hose and fire hose
• Turn out not a limitation

• Memory limitation
• Memory size vs. Coverage

Second Solution (Background Models)

34

• Previous model limited to temporal coverage
• Solution: Run background process over older data
• For spelling correction:

• Form pairwise edit distance between all queries
• Results are stored in HDFS
• Frontend cache combines real time & background results

AGENDA

35

• Motivation & Background
• Contributions
• Real-Time Query Suggestion
• First Solution
• Second Solution
• Future work
• Conclusion
• Discussion

Future Work

36

• Automatically perform pruning when memory is needed
• Single unified data platform to deal with real time and

slower moving suggestions (fast data + big data)

AGENDA

37

• Motivation & Background
• Contributions
• Real-Time Query Suggestion
• First Solution
• Second Solution
• Future work
• Conclusion
• Discussion

Conclusion

38

• The paper proposed two solutions for real time
related query suggestion

• The first solution was using Hadoop
• The second solution was using in memory approach

39

Thank you
Any Questions

Discussion

40

• No experimental results?
• Memory size vs. coverage trade off, how to reduce the gap?

• A distributed in memory system? (challenges)
• How to decide automatically which data to prune?
• Would sampling help to solve log import bottleneck in first

solution ? How ?
• How to use other information like click graph with in memory

structures to enhance the ranking?

