
Hekaton: SQL Server’s Memory-Optimized OLTP Engine

Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson,
Pravin Mittal, Ryan Stonecipher, Nitin Verma, Mike Zwilling

Microsoft
{cdiaconu, craigfr, eriki, palarson, pravinm, ryanston, nitinver, mikezw}@microsoft.com

Presented by: Prateek Gulati

1

•  Why do you need in-memory processing?
•  Hekaton engine overview
•  How it is done
•  Benefits
•  Limitations

Agenda

2

Industry Trends: CPU

•  Computing power holds
Moore Law due to
parallelism

•  CPU clock frequency
stalled

•  Parallel processing has its
limits due to lock contention

3

Industry Trends: RAM

•  RAM prices continue to fall
•  Servers have HUGE memory
•  DDR4 expected to hit mainstream in 2014-2015
•  Traditional page based architecture has limitations, even when all pages are

in memory

1	

10	

100	

1000	

10000	

100000	

1000000	

19
90
	

19
91
	

19
92
	

19
93
	

19
94
	

19
94
	

19
95
	

19
96
	

19
97
	

19
98
	

19
99
	

20
00
	

20
00
	

20
01
	

20
02
	

20
04
	

20
05
	

20
07
	

20
08
	

20
09
	

20
11
	

U
S$
/G

B	

$	 per	 GB	 of	 PC	 Class	 Memory	

4

Hekaton-In-memory OLTP engine Architecture

5

SQL Server Integration

•  Same manageability,
administration &
development
experience

•  Integrated queries &
transactions

•  Integrated backup/
restore

•  If SQL Server crashes
data is fully
recoverable.

Main-Memory Optimized

•  Optimized for in-
memory data

•  Memory optimized
Indexes (hash and
range) exist only in
memory

•  No buffer pool, B-
trees

•  Stream-based storage
•  Transaction log

optimization (block
writes, no undo)

T-SQL Compiled to
Machine Code

•  T-SQL compiled to
machine code via C
code generator and
VC

•  Invoking a procedure
is just a DLL entry-
point

•  Aggressive
optimizations at
compile-time

A
rc

hi
te

ct
ur

al
 P

ill
ar

s

High Concurrency

•  Multi-version
optimistic
concurrency control
(MVCC) with full ACID
support

•  Core engine uses non
blocking lock-free
algorithms

•  No lock manager,
latches or spinlocks

•  No TempDB

Hekaton Integration with SQL Server

6

Native Compilation Process
Compile T-SQL statements and table data access logic into machine code

7

SQL Engine In-Memory
Compiler

sqlservr.exe

Parser/Algebrizer/
Metadata/Query Optimizer

VC++ compiler/
linker

Create table/proc/
variable

code generation

.c
file

DLL

Optimized query tree /
metadata

Native Compiled Stored Procedures

Interpreted T-SQL Access

•  Access both memory- and disk-
based tables

•  Less performant
•  Virtually all T-SQL functions

supported
•  When to use

•  Ad hoc queries
•  Reporting-style queries
•  Speeding up app migration

Natively Compiled Procs

•  Access only memory optimized
tables

•  Maximum performance
•  Limited T-SQL functions supported
•  When to use

•  OLTP-style operations
•  Optimize performance critical business

logic
•  More the logic embedded, better the

performance improvement

8

In-Memory OLTP Structures summary
Rows
•  Row structure is optimized for memory access
•  There are no Pages
•  Rows are versioned and there are no in-place updates
•  Fully durable by default (but they don’t have to be)

Indexes
•  There is no clustered index, only non-clustered indexes
•  Indexes point to rows, access to rows is via an index
•  Indexes do not exist on disk, only in memory, recreated during recovery
•  Hash indexes for point lookups
•  Range indexes for ordered scans and Range Scans
• 

9

In-Memory Row Format

10

Row Header Payload (Actual column data)

Begin Ts End Ts StmtID IdsLinkCou
nt Index1 ptr Index2 ptr

8 bytes 8 bytes 4 bytes 2 bytes + 2
for padding

8 bytes * Number of
Indexes

•  Begin/End timestamp determines row’s version validity and visibility
•  No concept of data pages, only rows exist
•  Row size limited to 8060 bytes (@table create time) to allow data to be moved to disk-based

tables
•  Not every SQL table schema is supported (Ex: LOB and SqlVariant)

Hash Indexes

11

Non Clustered (Range) Index
•  No latch for page updates
•  No in-place updates on index pages
•  Page size- up to 8K. Sized to the row
•  Sibling pages linked one direction
•  No covering columns (only the key is

stored)

12

10 20 28

4 8 10 11 15 18 21 24 27

PAGE

Page Mapping Table

0

1

2

3

14

15

PAGE

1 2 4 5 6 7 25 26 27

200, ∞ 1 50, 300 2

Root

Non-leaf pages

Leaf pages

Data rows

PageID-0

PageID-3

Key Key

Physic
al

Logical

PageID-5

PageID-15

100, 200 1

PageID-6

Memory Optimized Table Insert

13

50, ∞ Jane Prague

Timestamps Name Chain ptrs City

Hash index
on City

Hash index
on Name

T100: INSERT (John, Prague)

100, ∞ John Prague

90, ∞ Susan Bogota

f(John) f(Prague)

Memory Optimized Table Update

14

90, 150 Susan Bogota

50, ∞ Jane Prague

Timestamps Name Chain ptrs City

Hash index
on City

Hash index
on Name

T200: UPDATE (John, Prague) to (John, Beijing)

100, ∞ John Prague

200, ∞ John Beijing

100, 200
f(Beijing)

f(John)

Memory Optimized Table Delete

15

50, ∞ Jane Prague

Timestamps Name Chain ptrs City

Hash index
on City

Hash index
on Name

T150: DELETE (Susan, Bogota)

100, ∞ John Prague

90, ∞ Susan Bogota 90, 150

Transaction Durability
•  Transaction durability is ensured to allows system to recover memory-

optimized table after a failure.
•  Log streams contain the effects of committed transactions logged as

insertion and deletion of row versions
•  Checkpoint streams come in two forms:

•  a) data streams which contain all inserted versions during a timestamp
interval,

•  b) delta streams, each of which is associated with a particular data stream
and contains a dense list of integers identifying deleted versions for its
corresponding data stream

•  Hekaton table can be durable or non-durable
•  Stored in a single memory-optimized FILEGROUP based on FILESTREAM

implementation
•  Sequential IO pattern (no random IO)

16

Transaction Logging

•  Uses database’s transaction log to store content

•  Each Hekaton log record contains a transaction log
record header, followed by Hekaton-specific log content

•  All logging in Hekaton is logical

•  No physical log records for physical structure modifications
•  No index-specific / index-maintenance log records
•  Redo-only log records in transaction log

17

Checkpoints

Hekaton Checkpoint
•  Not tied to recovery interval or SQL checkpoint. Has

its own log truncation
•  Gets triggered when generated log exceeds a

threshold (1GB) or internal min time-threshold has
crossed since last checkpoint or manual checkpoint

•  Checkpoint is a “set of {Data, Delta} files and
checkpoint file inventory to apply transaction log
from” 18

Populating Data / Delta files

Data files:
•  Pre-allocated size (128 MB)
•  Hekaton Engine switches to new

data file when it estimates that
current set of log records will fill
the file

•  Stores only the inserted rows
•  Indexes exist only in memory, not

on disk
•  Once a data file is closed, it

becomes read-only
Delta files:
•  File size is not constant, write 4KB

pages over time
•  Stores IDs of deleted rows
 19

Delta file contains deleted rows within a given transaction range

Data file contains rows inserted within a given transaction range

Data / Delta Files

0 100

Transaction Timestamp
 Range

Data
File

Delta
File

Timestamp (INSERT) Timestamp (DELETE) RowID
Timestamp (INSERT) Timestamp (DELETE) RowID
Timestamp (INSERT) Timestamp (DELETE) RowID

Timestamp (INSERT) TableID RowID Payload
Timestamp (INSERT) TableID RowID Payload
Timestamp (INSERT) TableID RowID Payload

Checkpoint
File Pair

20

Merge Operation

•  Merges 2+ adjacent data / delta files pairs into 1 pair
•  Need for merge - Deleting rows causes data files to have

stale rows
•  Manual checkpoints closes file before it is “full”
•  Reduces storage required to “store” active data rows
•  Improves the recovery time
•  Stored Procedure provided to invoke merge manually

21

Merge Operation

22

Garbage Collection

23

90, 150 Susan Bogota

50, ∞ Jane Prague

Timestamps Name Chain ptrs City

Hash index
on Name

T250: Garbage collection

100, 200 John Prague

200, ∞ John Beijing

f(John)

f(Jane)

Cooperative Garbage Collection

•  Scanners can remove
expired rows when they
come across them

•  Offloads work from GC
thread

•  Ensures that frequently
visited areas of the index
are clean of expired
rows

100 200 1 John Smith Kirkland

200 ∞ 1 John Smith Redmond

100 ∞ 1 Peter Spiro Seattle

50 100 1 Jim Spring Kirkland

300 ∞ 1 Ken Stone Boston

TX4: Begin = 210
Oldest Active Hint = 200

24

Performance Gains

25

Hekaton Engine’s Scalability

26

Memory Optimized Table Limitations
Optimized for high-throughput OLTP
•  No XML and no CLR data types

Optimized for in-memory
•  Rows are at most 8060 bytes
•  No Large Object (LOB) types like varchar(max)
•  Durable memory-optimized tables are limited to 512 GB. (Non-durable tables have no size limit.)

Scoping limitations
•  No FOREIGN KEY and no CHECK constraints
•  No schema changes (ALTER TABLE) – need to drop/recreate table
•  No add/remove index – need to drop/recreate table
•  No Computed Columns
•  No Cross-Database Queries

27

Natively Compiled Procedures Restrictions

•  Not all operators/TSQLs are supported
•  Only Nested Loop join, no TSQL MERGE or EXISTS, cursors, nested

queries
•  No CASE statement, CTEs, user-defined functions, UNION statement,

DISTINCT statement
•  Transaction isolation level
•  SNAPSHOT, REPEATABLEREAD, and SERIALIZABLE
•  READ COMMITTED and READ UNCOMMITED is not supported
•  Cannot access disk-based tables
•  No TEMPDB! Use In-Memory Table variables
•  No automatic recompile on statistics changes
•  Need to stop & start SQL or drop & create procedure

 28

Create Filegroup
CREATE DATABASE [Hekaton]

ON PRIMARY

(NAME = N'Hekaton_data', FILENAME = N'C:\Data\Data\Hekaton_data.mdf'),

FILEGROUP [Hekaton_InMemory] CONTAINS MEMORY_OPTIMIZED_DATA

(NAME = N'Hekaton_mem', FILENAME = N'C:\Data\Mem\Hekaton_Lun1.mdf')

LOG ON

(NAME = N'Hekaton_log', FILENAME = N'C:\Data\Log\Hekaton_log.ldf')

ALTER DATABASE [Hekaton]

ADD FILE (NAME = N'Hekaton_mem', FILENAME = N'C:\Data\Mem
\Hekaton_Lun2.mdf')

TO FILEGROUP [Hekaton_InMemory]

29

FileGroup Container

Create Memory Optimized Table
CREATE TABLE [Customer] (

[CustomerID] INT NOT NULL

PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 1000000),

[AddressID] INT NOT NULL INDEX [IxName] HASH WITH (BUCKET_COUNT =
1000000),

[LName] NVARCHAR(250) COLLATE Latin1_General_100_BIN2 NOT NULL

INDEX [IXLName] NONCLUSTERED (LName)

)

WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);

30

This table is
memory optimized

This table is durable

Range Index

Hash Index

Collation BIN2

References
http://www.enterprisetech.com/2014/03/18/microsoft-turbocharges-transactions-hekaton-memory/
http://blogs.msdn.com/b/sqlcat/archive/2013/06/25/sql-server-in-memory-oltp-internals-overview-
for-ctp1.aspx
http://blogs.msdn.com/b/arvindsh/archive/2013/07/03/sql-2014-in-memory-oltp-hekaton-training-
videos-and-white-papers.aspx
https://www.simple-talk.com/sql/database-administration/exploring-in-memory-oltp-engine-
(hekaton)-in-sql-server-2014-ctp1/
http://www.sqlskills.com/blogs/bobb/category/hekaton/
http://thomaslarock.com/2013/08/sql-server-2014-in-memory-oltp-hekaton-useful-links
http://blogs.msdn.com/b/carlnol/archive/2013/09/16/implementing-lob-storage-in-memory-
optimized-tables.aspx
http://www.sqlpassion.at/archive/2013/08/12/extreme-transaction-processing-xtp-hekaton-the-
solution-to-everything/
http://mattsql.wordpress.com/2013/07/08/in-memory-oltp-with-sql-server-2014/
http://research.microsoft.com/en-us/news/features/hekaton-122012.aspx
www.slideshare.net/RaviOkade/

31

Thank you for your time!

Q&A?

32

