Scalable Semantic Web Data
Management Using Vertical
Partitioning

Introduction

Motivation:

Semantic Web necessitates high-performance data
management tools

Current state-of-the-art RDF databases (triple-stores)
perform poorly

Solution suggested in previous works
Property table — has undesirable features

Solution proposed
Vertically partitioning RDF data
Extension to column-oriented DBMS

Introduction

Goal:

Achieve scalability and performance in triple stores
Methodology

Current state-of-the-art: Investigate approaches in
RDBMS and suggested techniques like “property tables”

Explore benefits of vertical partitioning and column-store

Compare performance of different RDF storage schemes
on a real world RDF dataset

RDF Triples

Semantic breakdown

"Rick Hull wrote Foundations of Databases.”
Representation

Graph

Foundations of Databases hasAuthor Rick Hull
Statement
<"Foundations of Databases”, hasAuthor, "Rick Hull">
XML format

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about="Foundations of Databases>
<hasAuthor>Rick Hull</hasAuthor>
</rdf:Description>
</rdf :RDF>

RDF in RDBMSs - Issues

_ Subj. Prop. Obj.
Relation database IDI_| type | Booklype
ID1 title “XYZ”
3-co|umn schema IDI author | “Fox, Joe”
IDI copyright *2001”
ISSUES: ID2 type CDType
o ID2 title “ABC”
Performance (Many self-joins) D2 | artist | “Orr, Tim”
. i D2 copyright “1985”
1 Massive trlples table ID2 language “French”
[D3 type BookType
SELECT C.obj. D3 title “MNO”
FROM ;}ggtgz 22 g’ ID3 language “English”
SELECT ?title TRIPLES AS C ID4 type DVDType
FROM table WHERE A.subj. = B.subj. D4 title “DEF”
WHERE { ?book auth01.“ ‘‘Fox, Joe’’ AND B.subj. = C.subj. ID5 type CDType
?book copyright *‘‘2001’’° AND A.prop. = ‘copyright’ B title “GHI”
?book title ?title } AND A Ob] = ‘2001’ - _ —
— : § ID5 copyright “1995
AND B.prop. = ‘author = _
AND B.obj. = ‘‘Fox, Joe’’ ID6 type BookType
AND C.prop. = ‘title’ ID6 copyright “2004”

Property Tables

Goal: Speed up queries over triple-stores

ldea:

Cluster triples containing properties defined over
similar subjects

Example: “title”, “author”, “copyright”

Exploit the type property of subjects to cluster similar
sets of subjects

Example: Books, journals, CDs, etc.

Reduces number of self-joins

Clustered Property Tables

Exploit clusters of properties that tend

to be defined together
(properties for similar subjects)

Subj. Prop.
IDI] type
IDI] title “XYZ
IDI1 author “Fox, Joe”
DI copyright “20017
D2 type CDType
D2 title “ABC”
D2 artist “Orr, Tim”
D2 copyright “1985”
D2 language “French”
[D3 type BookType
ID3 title “MNO”
[D3 language “English”
[D4 type DVDType
ID4 title “DEF”
ID5 type CDType
ID5 title “GHI”
ID5 copyright “1995”
ID6 type BookType
ID6 copyright *2004”

Property Table
Subj. Type Title copyright
D] BookType | “XYZ” *20017
[D2 CDType “ABC” “1985”
[D3 BookType | “MNP” NULL
D4 DVDType | “DEF” NULL
ID5 CDType “GHI” “1995”
ID6 BookType | NULL *2004”
Left-Over Triples
Subj. Prop. Obj.
D1 author “Fox, Joe”
[D2 artist “Orr, Tim”
[D2 language “French”
[D3 language “English”

Property-Class Tables

Subj. Prop. Obj.
D1 type BookType
IDI title “XYZ”
D1 author “Fox, Joe”
D1 copyright “2001”
[D2 type CDType
ID2 title "ABC”
D2 artist “Orr, Tim”
ID2 copyright “1985”
D2 language “French”
[D3 type BookType
ID3 title “MNO”
[D3 language “English”
[D4 type DVDType
ID4 title “DEF”
ID5 type CDType
ID5 title “GHI”
ID5 copyright “1995”
ID6 type BookType
ID6 copyright *2004”

Exploit type of property to cluster similar
sets of subjects

Class: BookType

Subj. Title Author copyright
D1 “XYZ” | “Fox, Joe” *2001”
[D3 “MNP” NULL NULL
[D6 NULL NULL *2004”

Class: CDType

Subj. Title Artist copyright
ID2 “ABC” | “Orr, Tim” “1985”
ID5 “GHI” NULL “1995”

Left-Over Triples

Subj. Prop. Obj.
[D2 language “French”
[D3 language | “English”
[D4 type DVDType
[D4 title “DEF”

Property Tables - Issues

Complex to design

If table is made narrow with fewer property columns
table is less sparse
query confined to one property table is reduced -> more unions and joins

If table is made wider including more property columns
number of unions and joins decreases
more NULLs (more sparse) -> more wastage of space

Further complexity is added by multi-valued attributes
cannot be added in the same table with other attributes

Queries that do not select on property class type
problematic for property-class tables

Queries that have unspecified property values
problematic for clustered property tables

Vertically Partitioned Approach

Idea: One table per property
Column 1 —subjects that define the property
Column 2 — object values for those subjects

Each table sorted by subject
Particular subjects can be located quickly
Fast merge joins

Vertically Partitioned Approach

1 table per property

Column 1 - subject

Column 2 - object

Type
ID1 | BookType
ID2 CDType
ID3 | BookType
ID4 | DVDType
ID5 CDType
ID6 | BookType
Author
IDI | “Fox, Joe” |

Title Copyright
IDI “XYZ” IDI 2001~
ID2 “ABC” ID2 | *1985”
ID3 | “MNO” ID5S | *1995”
ID4 “DEF” ID6 | “2004”
ID5 | “GHI” Language

Artist ID2 | “French”
ID2 | “Orr, Tim” | ID3 | “English”

Subj. Prop. Obj.
IDI] type BookType
IDI title “XYZ”
IDI author “Fox, Joe”
IDI] copyright *20017
D2 type CDType
D2 title “ABC”
ID2 artist “Orr, Tim”
D2 copyright “1985”
[D2 language “French”
[D3 type BookType
ID3 title “MNO”
ID3 language “English”
[D4 type DVDType
ID4 title “DEF”
ID5 type CDType
ID5 title “GHI”
ID5 copyright “1995”
ID6 type BookType
ID6 copyright *2004”

Vertically Partitioned Approach

Advantages Author

. . IDI | “Fox,Joc"
Multi-values attributes supported ; e

Support for heterogeneous records
Null data not stored

No clustering algorithm
Only accessed properties are read

Fewer unions
Data for particular property is located in same table

Fast Joins
Simple, fast (linear) merge joins

“Green, John™

Extending a Column-Oriented

DBMS

Column-store is a natural storage layer to use
vertical partitioning

Advantages

Tuple headers stored separately

35 bytes in Postgres vs. 8 bytes in C-Store
Column-oriented data compression

Run-length encoding (ex. 1,1,1,2,2 -> 1x3, 2x2)
Do not necessarily have to store the subject column

Carefully optimized merge-join code
Prefetching

Materialized Path Expression

Subject-object joins are replaced by cheaper
subject-subject joins

We can add a new column representing
materialized path expression

Inference queries are a common operation on
Semantic Web data which can be accelerated
using this method.

Materialized Path Expression

SELECT B.subj

FROM triples AS A, triples AS B

WHERE A.prop = wasBorn

AND A.obj = ““1860’
AND A.subj = B.obj
AND B.prop = ‘‘Author’’

SELECT A.subj
FROM proptable AS A,
WHERE A.author:wasBorn =

‘118607’

Materialized
path
expression

Author

wasBorn

1860

Author

wasBorn

Experimental Evaluation

Barton Libraries Dataset
Longwell Queries

Calculating counts
Filtering
Inference

Results — Performance Numbers

250 - 579.8 408.7
- PropertyTal_aI_e a.nd
| 2997 Vertical Partitioning
c :
S = 2X-3X Triple-Store
@ 150 -
7))
L —
L)
£ 100 -
IF
S
L -
c 50
& | Lad
0 B C-Store added
Ql | Q2 | Q3 | Q4 | Q5 | Q6 : another factor of 10
Triple Store| 24.63 | 157 |224.3|27.67|408.7 | 212.7 improvement
Prop. Table | 12.66 | 18.37 | 579.8 | 28.54 | 47.85 | 101
M Vert. Part. |12.66| 41.7 | 71.3 | 35.49|52.34 | 84.6
M C-Store 0.66 | 1.64 | 9.28 | 2.24 | 15.88 | 10.81

Results - Scalability

Query 6 performance as number of triples scale

250

Super-Linear
(requires sorting of
200 intermediate results

/ after 3 selections
150 / and before join)
100
i

0 B e Y SUUUONS vy SR D D S *
0) 10 15 20 25 30 35 40 45 50 55

Number of Triples (millions)

Query time (seconds)

Triple Store === Vertical Partitioning —#&—
C-Store ----%--

Results — Materialized Path Expressions

Replace
Subject-object joins -> subject-subject joins

Q5 Q6
Property Table 39.49 (17.5% faster) | 62.6 (38% faster)
Vertical Partitioning | 4.42 (92% taster) 65.84 (22% faster)
C-Store 2.57 (84Y% faster) 2.70 (75% faster)

Results — Effect of Further Widening

Query | Wide Property Table | Property Table
% slowdown

Ql 60.91 381%
Q2 33.93 83%
Q3 584.84 1 %

Q4 44.96 S38%
Q5 76.34 60%
Q6 154.33 33%
Q7 24.25 298%

Conclusion

Semantic Web users require fast responses to queries

RDF triples store scales extremely poorly because
multiple self joins are required

Poorly-selected property table is BAD

Propose vertically partitioning tables

achieves similar performance in a row-oriented database
SIMPLER to implement

very good with column-oriented database

Comments/Discussion

Promising results for reads, but writes not
considered. Ideas?

What about load times?

