
Trinity:
A Distributed Graph Engine on a
Memory Cloud

Review of:
B. Shao, H. Wang, Y. Li. Trinity: a distributed graph engine on a memory cloud, Proc. ACM
SIGMOD International Conference on Management of Data, pages 505-516, 2013.

Project:
http://research.microsoft.com/en-us/projects/trinity/default.aspx

Presented by:
Jeff Avery
CS 848: Modern Database Systems
Mar 10, 2015

Outline

1. Introduction
2. Overview of Trinity
3. Architecture & Design

• Memory cloud
• Data model
• Graph computation paradigms
• Implementation

4. Experimental Evaluation
5. Conclusion

2

Types of Graph Queries

3

Online Queries
Real-time queries, random
Low latency

Example:
Finding the path between
nodes in a social network
(friend-of-a-friend search).

Offline Queries
Batch processing, iterative
High throughput

Example:
Running PageRank on a series
of web pages, and displaying
the results.

Hybrid Queries
Low latency + High throughput

Example:
Online shortest distance
calculation, using landmark
nodes discovered offline.

Introduction

What is Trinity?

4

http://research.microsoft.com/en-us/projects/trinity/

Trinity is a “storage infrastructure
and computation framework”
that “organizes multiple machines
into a globally addressable,
distributed memory address
space to support large graphs.”
[Shao 2013].

Trinity provides
• Distributed computation for

off-line analytics.
• Shared memory for online

query processing.

Overview

Trinity Computation Model

Trinity supports a vertex-
based computation model
• Similar to Pregel, based

on BSP model.
• Iterative, with each step

• Nodes send and
receive messages

• Nodes perform local
computation.

5

From: Trinity Project Page. Authors unknown. Retrieved 2015-03-06.
http://research.microsoft.com/en-us/projects/trinity/applications.aspx.

Overview

Trinity’s BSP Computation Model

Trinity Cluster Structure

6

Slave
Stores data, sends
messages and
computes.

Proxy (optional)
Aggregates data,
forwards messages.

Client
User-interface layer.

Overview

A Trinity cluster, including slaves, proxies and clients.

System Layers

Trinity is essentially a distributed
key-value store.
• Memory storage manages

memory allocation and
management, concurrency.

• Message passing supports
efficient communication between
nodes.

• TSL bridges the graph and data
model.

7

Overview

System Layers

Data Partitioning & Addressing

• Key-value store: 64-bit keys, blobs.
• Memory is partitioned into memory

trunks (multiple per machine).
• Hashing is used to locate a memory

trunk, and an addressing table is
used to locate the appropriate
machine.

• Memory trunks are backed up to
Trinity File System (TFS) for data-
persistence.

• Machines can dynamically join/leave
the memory cloud.

8

Architecture: Memory Cloud

Data partitioning. The addressing table
ties trunks to physical machines

Modeling Graphs

• Trinity is concerned with efficient representation of graph nodes
and edges, in a way that that facilitates graph traversal.
• Nodes are represented in the key-value store as cells with

unique keys or cellIds:

• Cells contains all of the information for that node:
• Edges are represented by as a list of cellIDs of adjacent

cells (e.g. undirected graph: single list, directed graph:
incoming and outgoing lists).

• Properties (e.g. name, type, weight).

9

Architecture: Data Model

Trinity Specification Language (TSL)
“It is hard, if not entirely impossible, to support efficient general purpose
graph computation using fixed graph schema“ [Shao 2013]
• TSL defines graph structure and network communication protocols.

10

Architecture: Data Model

Movie and Actor nodes modeled in TSL. Edges are defined as lists of Cell Ids.

Object-Oriented Cell Manipulation

• TSL models the data, but how do we store it?

11

Architecture: Data Model

Runtime objects Blobs

Referencing Cannot be referenced
across machine

boundaries

Assigned unique Ids
and globally

addressable.

Memory cost High memory cost
(e.g. empty runtime

object consumes 24
bytes on the 64-bit .NET

platform!)

Very low cost
(stream of bytes)

Serialization to TFS Costly to serialize and
deserialize.

Cheap and fast to
serialize and deserialize.

Object-Oriented Cell Manipulation

• Blobs aren’t very user-friendly
• TSL describes graph structure, exposes data mapping

methods.

12

Architecture: Data Model

Cell access. The TSL Schema defines the data structure, which cell accessor methods expose.

Traversal Based Online Queries

• Example: On a social network, find anyone whose first name is
“David” among his/her friends, his/her friends’ friends and so on.
• Searching each user by index in a large-scale web graph does

not scale.
• Trinity enables efficient BFS and DFS queries over large graph

data.
• On a “Facebook-like sized graph” consisting of 800 million

nodes, 104 billion edges: exploring the entire 3-hop
neighborhood on an 8-node cluster took 100 ms.

13

Graph Computation Paradigms: Online

A New Paradigm for Online Queries

• “In Trinity, the combination of fast random access and parallel
computing, offers a new paradigm which enables us to rethink
efficient query processing on web-scale graphs” [Shao 2013].

14

Graph Computation Paradigms: Online

Subgraph matching (1 million to 128 million nodes, average node degree 16,
average query size 10 nodes)

Vertex-Centric Offline Analytics

15

Graph Computation Paradigms: Offline

• Trinity offers a vertex-centric computation (BSP) model.
• In each super-step:

• A vertex receives messages, performs some computation,
and sends out messages as-needed to other vertices.

• Pregel allows messages to be sent between any nodes,
while Trinity restricts messages to a subset of vertices.

• Why does this matter?
1. Many algorithms only require access to closest vertices

(e.g. PageRank, shortest path).
2. This allows opportunities to optimize message passing

(since we have a predictable communication pattern).

Message Passing Optimization

Trinity partitions vertices (b), to
reduce the number of messages
that need to be sent.

• Use hub vertices to store
messages for the entire
iteration, and just partition the
remaining vertices in the
neighborhood.

• Messages are grouped to
avoid redundancy (u -> x, y)

16

Graph Computation Paradigms: Offline

Bipartite View on a Local Machine.
Partitioning (b) reduces message overhead.

Memory Optimization

• Observation: the data access pattern of offline analytics can be predicted.
• This means that we don’t need to store the entire graph in memory!

• e.g. for the Facebook social-graph described, this is a savings of
708 GB memory space.

• Less memory = fewer machines for the same performance.

17

Type A: Vertices in a partition
currently scheduled to run on a
machine.

Type B: All of the other vertices.

Memory-resident cell structures

Graph Computation Paradigms: Offline

A New Paradigm for Offline Analytics
• “Can we use probabilistic inference to derive the answer for the entire

graph from the answer on a single machine?” [Shao 2013]
• e.g. 1 in 10 machines has 10% of the nodes and edges, and links

directly to a large percentage of remaining nodes.
• “Local betweenness” has good accuracy from a single vertex.

18

Graph Computation Paradigms: Offline

Calculating landmarks for shortest-distance calculation.

Circular Memory Management
• Goal of avoiding memory gaps

when allocating memory.
• Memory allocation

• 2 GB reserved / memory trunk
• Allocate from the append head;

if insufficient, allocate more and
advance committed head.

• A defragmentation daemon moves
key-value pairs towards the append
head as needed.

• Memory reservation allows short-
lived over-allocation and prevents
aggressive defragmentation.

19

Implementation

Circular Memory Management

Fault Tolerance

• Shared Address Table Maintenance
• The addressing table (which maps machine:trunk) is a

shared global data structure. Primary replica is maintained
on a leader machine and persisted to TFS.

• If a machine fails, the leader starts recovery (below), updates
the addressing table and broadcasts the change.

• If a leader fails, a new one is elected.
• Fault Recovery

• BSP-based synchronous computation: checkpoints to TFS,
which can be loaded by any machine over TFS for recovery.

• Asynchronous computation: snapshots.
20

Implementation

Trinity: Graph Traversal
• People-search is an example of

an online, traversal-based query.
• Measures query response time of

searching friends by name within
2 and 3 hops on social graphs.
• The response times of 2-hop

queries are under 10 ms.
• The response time of 3-hop

search on the graph with 130
node degree (e.g. Facebook) is
96.2 ms.

• Suggests that the “David”
example could be run on
Facebook in under 100 ms.

21

Evaluation

Trinity People Search Query Results
(8 nodes, each with 96 GB RAM, 2x

2.67 GHz Xeon Processors).

Trinity: Page Rank

• Common offline web graph
analytics task.

• Measures computation time
for one iteration (a super-step
in BSP model) on 8, 10, 12
and 14 machines.
• One page rank iteration on

a graph with 1 billion nodes
can be completed in one
minute.

22

Evaluation

Page Rank Results
(8 nodes, each with 96 GB RAM, 2x

2.67 GHz Xeon Processors).

Trinity vs. Giraph: Page Rank

• Configuration: Trinity: 8 nodes, Giraph: 16 nodes (all nodes have 96 GB
RAM, 2x2.67 GHz Xeon Processors).

• Results: Trinity is faster by roughly 100x. Giraph also ran out of memory in
some configurations.

23

Page Rank for Trinity vs. Giraph

Evaluation

Trinity: Breadth First Search

• Breadth First Search (BFS) is
a fundamental graph
computation operation, often
used for benchmarks.

• Measures performance of
BFS on 8, 10, 12 and 14
machines.
• For the 1 billion node

graph, it takes 1028
seconds on 8 machines,
and 644 seconds on 14
machines.

24

Evaluation

BFS Results
(8 nodes, each with 96 GB RAM, 2x

2.67 GHz Xeon Processors).

Trinity vs. PBGL: Breadth First Search

• Configuration: 16 machine cluster (all nodes have 96 GB RAM, 2x2.67
GHz Xeon Processors).

• Results: Trinity is faster by roughly 10x, with a 10x reduced memory
footprint. PBGL also ran out of memory in some configurations.

25

Evaluation

BFS for Trinity vs. PBGL

Conclusions & Take-Away

• Trinity is a graph-engine specifically designed to address
both online and offline graph analytics queries.

• It exhibits better performance than other, generic
solutions, and runs efficiently on commodity hardware.

• The ability to run online queries against large graph data
opens new possibilities for analyzing this data.

26

Conclusions

Questions

• Feedback?
• Comments?

27

Conclusions

