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Introduction: Background 

• Growing interest in creating, storing and processing large 
graph data 

 
Social Networks 

Recommendation 
Systems 

Bioinformatics 

Web Pages 



Introduction: Motivation 

  Graph algorithm implementation 

 Irregular computation 

 Resource under-utilization 

 Large performance gap: Naive implementation vs. hand-
optimized code 

 No standard “building block” 

 Sparse matrix, vertex-centric programming, etc. 

 Performance varies depending on both frameworks and 
algorithms 

 A headache to choose frameworks 

Create a roadmap to improve graph frameworks’ performance 
Bridge the performance gap against native code 



Graph Algorithms 
• PageRank 

• Iteratively computes rank (web page popularity) for each vertex 
(web page) in a directed graph (reference web) 

 

 

 

 

• Breadth Frist Search (BFS) 

• Traverses an undirected, unweighted graph from one vertex and 
compute the minimal distance 

• In each iteration: 

 

 

Pagerank of vertex j at iteration t Probability of a random jump 

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets" 



Graph Algorithms 
• Triangle Counting 

• Each pair of vertices in an edge compare their neighbourhood 
lists and count the number of shared neighbours 

 

 

• Collaborative Filtering 

• Estimates the rating of an item by a given user 

Existence of edge between 
i and k 

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets" 



Graph Analytics Frameworks: GraphLab 

• Graph algorithms expressed as programs running on a vertex 

• Each vertex reads incoming messages, updates states and 
sends message asynchronously 

• PageRank 

 

 

 

• BFS 
 

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets" 



Graph Analytics Frameworks: CombBLAS 

• Provides linear algebra primitives for graph analytics 

• Operates on sparse matrix and vectors 

• Edge-based partitioning (2-D partitioning) 

• PageRank 

 

 

 

• BFS 

Adjacency 
matrix 

Page rank 
values at 

iteration t+1 

vector of starting vertices 

Next vectices to 
explore 

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets" 



Graph Analytics Frameworks: SociaLite 

• Declarative language running recursive queries 

• Horizontally partitioned for parallelism 

• PageRank 

 

 

 

 

• Triangle Counting 

Page rank of node n at 
iteration t+1 

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets" 



Graph Analytics Frameworks: Giraph 

• Bulk synchronous graph processing system on Hadoop 

• Vertex partitioning (1-D partitioning) 

• Collaborative Filtering 

• Gradient Descent 

• In one iteration, every vertex 

1. Aggregates information from neighbours 

2. Sends updated vector to neighbours 

 

 

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets" 



Graph Analytics Frameworks: Galois 

• Framework designed for irregular computation 

• Work-item based parallelization 

• Automatous scheduling and scalable data structures 

• Runs on a single node 

• Triangle Counting 
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Experimental Setup 

Dataset # Vertices # Edges  

Facebook [1] 
Wikipedia [2] 
LiveJournal [2] 
Netflix [3] 

2,937,612 
3,566,908 
4,847,571 
480,189 users 
17,770 movies 

41,919,708  
84,751,827  
85,702,475  
99,072,112 ratings 

Twitter [4] 
Yahoo Music [5]  

61,578,415 
1,000,990 users 
624,961 items  

1,468,365,182  
252,800,275 ratings 

Synthetic Graph500 536,870,912 8,589,926,431 

Synthetic Collaborative 
Filtering 

63,367,472 users 
1,342,176 items 

16,742,847,256 ratings 



Experiment Results: Native Code 

• Native hand-optimized implementation efficiency 

 

 

 

 

 

 

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets" 



Experiment Results: Single Node 
• Performance on a 

single node with 
real world and 
synthetic graphs 

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets" 



Experiment Results: Multiple Nodes 

• Performance on multiple nodes using large synthetic graphs 

 

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets" 



Experiment Results: Multiple Nodes 

• Performance on multiple nodes using large synthetic graphs 

 

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets" 



Experiment Results: Summary 

• Slowdown factors of framework performance against native 
code on a single node 

 

 

 

 

• Slowdown factors of framework performance against native 
code on multiple nodes 
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Experiment Results: Framework Analysis 

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets" 



Optimizations 

• Key optimizations in native implementation 

• Data structures 

• Data compression 

• Overlap of Computation and Communication 

• Message passing mechanisms 

• Partitioning schemes 

 

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets" 



Recommendations 

• GraphLab 
• Mainly limited by network 

bandwidth ⇒ MPI 
• Data compression, 

prefetching, computation 
and communication 
overlap 

• CombBLAS 
• Use bit-vector for 

compression in BFS 
• Techniques for inter-

operation optimization 

• Galois 
• Implemented most 

optimizations 
 

• Giraph 
• Boost network bandwidth 
• Data compression 
• Reduce memory buffer size 

for higher memory 
efficiency 

• SociaLite 
• Most algorithms limited by 

network bandwidth 
• Data compression 

 
 



Conclusion 

• Compares graph frameworks in terms of programming model 
and implementation of multiple algorithms 

• Exposes performance gap (2-30X) between graph frameworks 
and hand-optimized native code 

• Analyzes CPU usage, memory footprint, and network traffic to 
explain performance gap 

• Shows performance gains of optimization techniques in native 
code and recommendations for graph frameworks 

 

“our goal is not to come up with a new graph processing 
benchmark or propose a new graph framework, but to analyze 
existing approaches better to find out where they fall short” 



Discussion 

• The optimization techniques are know when the native code is 
implemented. Why not apply them directly to the frameworks 
if possible? 

• The paper analyze framework in terms of CPU usage, memory 
footprint and network traffic. How can we reason about the 
performance difference based on the programming models? 

• For example, vertex programming vs. parallel graph library 

•  What are the pros and cons of … 

• Using only one graph framework 

• Selecting the framework to use based on the algorithm 

• Simply developing the native implementations 
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