
Navigating the Maze of Graph Analytics
Frameworks using Massive Graph
Datasets

Nadathur Satish, Narayanan Sundaram, Mostofa Ali Patwary, Jiwon Seo, Jongsoo
Park, M. Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey

Presented by Guoyao Feng

Agenda

• Introduction

• Graph Algorithms

• Graph Analytics Frameworks

• Experimental Setup

• Experiment Results

• Optimizations and Recommendations

• Conclusion

• Discussion

Introduction: Background

• Growing interest in creating, storing and processing large
graph data

Social Networks

Recommendation
Systems

Bioinformatics

Web Pages

Introduction: Motivation

 Graph algorithm implementation

 Irregular computation

 Resource under-utilization

 Large performance gap: Naive implementation vs. hand-
optimized code

 No standard “building block”

 Sparse matrix, vertex-centric programming, etc.

 Performance varies depending on both frameworks and
algorithms

 A headache to choose frameworks

Create a roadmap to improve graph frameworks’ performance
Bridge the performance gap against native code

Graph Algorithms
• PageRank

• Iteratively computes rank (web page popularity) for each vertex
(web page) in a directed graph (reference web)

• Breadth Frist Search (BFS)

• Traverses an undirected, unweighted graph from one vertex and
compute the minimal distance

• In each iteration:

Pagerank of vertex j at iteration t Probability of a random jump

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets"

Graph Algorithms
• Triangle Counting

• Each pair of vertices in an edge compare their neighbourhood
lists and count the number of shared neighbours

• Collaborative Filtering

• Estimates the rating of an item by a given user

Existence of edge between
i and k

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets"

Graph Analytics Frameworks: GraphLab

• Graph algorithms expressed as programs running on a vertex

• Each vertex reads incoming messages, updates states and
sends message asynchronously

• PageRank

• BFS

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets"

Graph Analytics Frameworks: CombBLAS

• Provides linear algebra primitives for graph analytics

• Operates on sparse matrix and vectors

• Edge-based partitioning (2-D partitioning)

• PageRank

• BFS

Adjacency
matrix

Page rank
values at

iteration t+1

vector of starting vertices

Next vectices to
explore

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets"

Graph Analytics Frameworks: SociaLite

• Declarative language running recursive queries

• Horizontally partitioned for parallelism

• PageRank

• Triangle Counting

Page rank of node n at
iteration t+1

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets"

Graph Analytics Frameworks: Giraph

• Bulk synchronous graph processing system on Hadoop

• Vertex partitioning (1-D partitioning)

• Collaborative Filtering

• Gradient Descent

• In one iteration, every vertex

1. Aggregates information from neighbours

2. Sends updated vector to neighbours

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets"

Graph Analytics Frameworks: Galois

• Framework designed for irregular computation

• Work-item based parallelization

• Automatous scheduling and scalable data structures

• Runs on a single node

• Triangle Counting

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets"

Experimental Setup

Dataset # Vertices # Edges

Facebook [1]
Wikipedia [2]
LiveJournal [2]
Netflix [3]

2,937,612
3,566,908
4,847,571
480,189 users
17,770 movies

41,919,708
84,751,827
85,702,475
99,072,112 ratings

Twitter [4]
Yahoo Music [5]

61,578,415
1,000,990 users
624,961 items

1,468,365,182
252,800,275 ratings

Synthetic Graph500 536,870,912 8,589,926,431

Synthetic Collaborative
Filtering

63,367,472 users
1,342,176 items

16,742,847,256 ratings

Experiment Results: Native Code

• Native hand-optimized implementation efficiency

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets"

Experiment Results: Single Node
• Performance on a

single node with
real world and
synthetic graphs

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets"

Experiment Results: Multiple Nodes

• Performance on multiple nodes using large synthetic graphs

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets"

Experiment Results: Multiple Nodes

• Performance on multiple nodes using large synthetic graphs

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets"

Experiment Results: Summary

• Slowdown factors of framework performance against native
code on a single node

• Slowdown factors of framework performance against native
code on multiple nodes

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets"

Experiment Results: Framework Analysis

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets"

Optimizations

• Key optimizations in native implementation

• Data structures

• Data compression

• Overlap of Computation and Communication

• Message passing mechanisms

• Partitioning schemes

Figures from "Navigating the maze of graph analytics frameworks using massive graph datasets"

Recommendations

• GraphLab
• Mainly limited by network

bandwidth ⇒ MPI
• Data compression,

prefetching, computation
and communication
overlap

• CombBLAS
• Use bit-vector for

compression in BFS
• Techniques for inter-

operation optimization

• Galois
• Implemented most

optimizations

• Giraph
• Boost network bandwidth
• Data compression
• Reduce memory buffer size

for higher memory
efficiency

• SociaLite
• Most algorithms limited by

network bandwidth
• Data compression

Conclusion

• Compares graph frameworks in terms of programming model
and implementation of multiple algorithms

• Exposes performance gap (2-30X) between graph frameworks
and hand-optimized native code

• Analyzes CPU usage, memory footprint, and network traffic to
explain performance gap

• Shows performance gains of optimization techniques in native
code and recommendations for graph frameworks

“our goal is not to come up with a new graph processing
benchmark or propose a new graph framework, but to analyze
existing approaches better to find out where they fall short”

Discussion

• The optimization techniques are know when the native code is
implemented. Why not apply them directly to the frameworks
if possible?

• The paper analyze framework in terms of CPU usage, memory
footprint and network traffic. How can we reason about the
performance difference based on the programming models?

• For example, vertex programming vs. parallel graph library

• What are the pros and cons of …

• Using only one graph framework

• Selecting the framework to use based on the algorithm

• Simply developing the native implementations

References

1. C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and B. Y.
Zhao. User interactions in social networks and their
implications. In EuroSys, pages 205–218, 2009.

2. T. Davis. The University of Florida Sparse Matrix Collection.
http://www.cise.ufl.edu/research/sparse/matrices.

3. J. Bennett and S. Lanning. The Netflix Prize. In KDD Cup and
Workshop at ACM SIGKDD, 2007.

4. H. Kwak, C. Lee, H. Park, and S. B. Moon. What is twitter, a
social network or a news media? In WWW, pages 591–600,
2010.

5. Yahoo! - Movie, Music, and Images Ratings Data Sets.
http://webscope.sandbox.yahoo.com/catalog.php?datatype
=r.

6. R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang.
Introducing the graph 500. Cray User’s Group (CUG), 2010.

http://www.cise.ufl.edu/research/sparse/matrices
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

