
HAWQ: A Massively Parallel
Processing SQL Engine in Hadoop

Lei Chang, Zhanwei Wang, Tao Ma, Lirong Jian, Lili Ma, Alon
Goldshuv Luke Lonergan, Jeffrey Cohen, Caleb Welton, Gavin

Sherry, Milind Bhandarkar Pivotal Inc
{lchang, zwang, tma, ljian, lma, agoldshuv,

llonergan, jcohen, cwelton, gsherry, mbhandarkar}@gopivotal.com

Guoyao Feng
CS 848

University of Waterloo

Agenda

• Introduction

• HAWQ Architecture

• Query Processing

• Interconnect

• Transaction Management

• Extension Framework

• Experiments

• Conclusions

Background

• Shifting Paradigm

• Requirements for Hadoop
– Interactive Queries

– Scalability

– Consistency

– Extensibility

– Standard Compliance

– Productivity

data
source

data
warehouse

heavy ETL process

data
source

central
repository
(HDFS)

Motivation
Hadoop’s

advantages

• Scalability

• Fault tolerance

• ...

Hadoop limitations

• Poor performance
for interactive
analysis

• Low-level
programming
model

• Lack of transaction
support

MPP features

• Excellent for
structured data
processing

• Fast query
processing
capabilities

• Automatic query
optimization

HAWQ

Introducing HAWQ

• HAWQ – A MPP SQL query engine on top of
HDFS

– Combines the merit of Greenplum Database and
Hadoop distributed storage

– SQL compliant

– Support large-scale analytics for big data (MADlib)

– Interactively query various data sources in
different Hadoop format

Agenda

• Introduction

• HAWQ Architecture

• Query Processing

• Interconnect

• Transaction Management

• Extension Framework

• Experiments

• Conclusions

HAWQ Architecture

MPP shared-
nothing compute

layer

Distributed
storage layer

HAWQ Architecture: Interface

Challenge: Simplify the interaction between HAWQ and external
systems

Design Choice: Enhance standard interfaces with open data
format support
– External systems can bypass HAWQ to access table files on Hadoop

(HDFS API)

– Open MapReduce InputFormats and OutputFormats

HAWQ Architecture: Catalog Service
• Catalog describes the system and all objects in

the system

• CaQL: a simplified catalog query language for
internal access
– Easy to implement

– Scalability

•Description about filespaces, tablespaces,
schemas, databases, tables, etc.Database objects

•Information about the segments and their
status

System
information

•Users, roles and privilegesSecurity

•Languages and encoding support
Language and

Coding

HAWQ Architecture: Data Distribution

• Hash distribution

– Most frequently used
strategy

– Align tables to improve
some import query
patterns

• Random distribution

– Distribute rows in a
round-robin fashion

– Even data distribution

– Works well for table with
a small number of
distinct valuesid A_payload

2 A2

3 A3

id B_payload

3 B3

4 B4

Segment

HAWQ Architecture: Data Distribution

• Table partitioning

– Range partitioning + list partitioning

– Creates an inheritance relationship between the
top-level parent table and child tables

– Improve query performance if only a subset of
partitions are accessed

HAWQ Architecture: Query execution
workflow

QD -> Query Dispatcher
QE -> Query Executer

HAWQ Architecture: Storage

• HAWQ supports a variety of storage models on HDFS

• Transformation among different storage models
done at the user layer

• Optimized for read-mostly full table scan and
bulk append loads

Row-
oriented/Read
optimized AO

• Columns stored in large and packed blocks

• Efficient compression

Column-
oriented/Read
optimized CO

• Columns stored in a row group instead of
separate files

• Nested data

Column-
oriented/Parquet

Vertically
partitioned

HAWQ Architecture: Fault Tolerance
• Master

– Warm standby kept synchronized with a transaction log
replication process

• Segment
– Stateless

– Simple recovery

– Better availability

• Disk
– Disk failure of user data handled by HDFS

– Disk failure of intermediate query output marked by
HAWQ

Agenda

• Introduction

• HAWQ Architecture

• Query Processing

• Interconnect

• Transaction Management

• Extension Framework

• Experiments

• Conclusions

Query Processing
• Query Types

• Query Plan

– Relational operators: scans, joins, etc

– Parallel ‘motion’ operators

• Only access catalog tables

• Queries evaluated without dispatching

Master-only
queries

• Physical query plans are dispatched to all segments

• Most common queries

Symmetrically
dispatched queries

• A slice accesses a single segment directory

• Save network bandwidth and improve concurrency
of small queries

Directly dispatched
queries

pipelined

Query Processing
• Parallel ‘motion’ Operators

• Every segment sends the input tuples to all
other segments

Broadcast
Motion (N:N)

• Ever segment rehashes tuples on a column
and redistribute to the appropriate
segments

Redistribute
Motion (N:N)

• Every segment sends the input tuples to a
single segment (i.e. the master)

Gather
Motion (N:N)

Query Processing
• Problem: A large number of QEs connect to the

master and query meta data

• Solution:

– Dispatch the metadata along with the execution plan (self-
described plan)

– Store read-only meta data on the segments

Query Processing Example

1-gang (QD)

N-gang
(QEs)

Data
motion
boundary

Agenda

• Introduction

• HAWQ Architecture

• Query Processing

• Interconnect

• Transaction Management

• Extension Framework

• Experiments

• Conclusions

Interconnect
• Issues with TCP interconnect

– Port number limitation (60k)

– Expensive connection setup

• UDP interconnect to rescue

– Reliability

– Ordering

– Flow control

– Performance and scalability

– Portability

UDP Interconnect
• Protocol

UDP Interconnect

• Implementation details

– Typical implementation of reliable UDP solution

– Sender maintains a send queue and an expiration
queue

– Flow control window cut down to a minimal
predefined value followed by slow start

– OUT-OF-ORDER and DUPLICATE message

– Send a status query message to eliminate
deadlock

Agenda

• Introduction

• HAWQ Architecture

• Query Processing

• Interconnect

• Transaction Management

• Extension Framework

• Experiments

• Conclusions

Transaction Management

• Catalog

– Write ahead log (WAL)

– Multi-version concurrency control (MVCC)

– Support snapshot isolation

• User data

– Append-only HDFS files avoids complexity

– System catalog records logical file length to control visibility

• No distributed commit protocols

– Transaction is only noticeable on the master node

– Self-described plans convey visibility information to segments

– Transaction only occurs on master node

Transaction Management

• Isolation levels

• Locking

– Control the conflicts between concurrent DDL and
DML statements

• A statement can only see rows
committed before it begins

Read
committed

• All statements of he current
transaction can only see rows
committed before the first
query

Serializable

Read
Uncommitted

Repeatable
read

Transaction Management

• Pivotal HDFS adds truncate to support transaction
– Truncate is necessary for undoing changes by aborted

transactions

– Hadoop HDFS currently does not support truncate

– Atomicity is guaranteed
• Only one update operation allowed

• Truncate applied to closed files only

• Concurrent Updates

– Lightweight swimming lane approach for
concurrent inserts

– Catalog table is used to manage user table files

Agenda

• Introduction

• HAWQ Architecture

• Query Processing

• Interconnect

• Transaction Management

• Extension Framework

• Experiments

• Conclusions

Extension Framework

PXF: a fast and extensible framework connecting
HAWQ to any data store of choice

• Users implement a parallel connector API to create
connector for data stores

Extension Framework

• Benefits

– A real connection among various data stores to share
data

– Complex joins between internal HAWQ tables and
external PXF tables

– External jobs can run faster with HAWQ/PXF

• Advanced functionality

– Exploits data locality to minimize network traffic

– Exposes a filter push down API

– Planner statics collection

HAWQ in Distributed Data Processing

Data processing
framework

• MapReduce

• Dryad

• Spark

Framework extension

• Pig

• Hive

• Shark

Native SQL engines on
HDFS

• Impala

• Presto

• Drill

Database and Hadoop
Mix

• Greenplum

• DB2

• Vertica

HAWQ

Agenda

• Introduction

• HAWQ Architecture

• Query Processing

• Interconnect

• Transaction Management

• Extension Framework

• Experiments

• Conclusions

Experiments: Competing Systems

• Stinger
– a community-based effort to optimize Apache

Hive

– reported 35x-45x faster than the original Hive

– 36GB RAM on each node in YARN, 4GB minimum
memory for each container

• HAWQ
– 6 HAWQ segments are configured on each node

– 6GB memory is allocated to each segment.

Experiments: TCP-H Results

Experiments

Conclusion: HAWQ

• A massively parallel processing SQL engine

• Inherits merits from MPP database and HDFS

• Stateless segment design supported by metadata
dispatch and self-described execution plan

• UDP based interconnect to overcome TCP limitations

• Transaction management supported by a swimming
lane model and truncate operation in HDFS

• Significant performance advantage over Stinger

Discussion

The master node alone handles transaction, catalog, user interaction, query processing,
the final aggregation step of gather motion, etc.
1. Will it be the bottleneck in the system?
2. What are the alternative designs?

The paper claims that PXF allows HAWQ to interact with any data store of choice and
run any type of SQL directly on external data sets.
1. What if the format is not compatible with Hadoop data formats or SQL query

languages?
2. Is performance and efficiency a valid concern here?

