Local Graph Sparsification for Scalable Clustering

Venu Satuluri, Srinivasan Parthasarathy and Yiye Ruan

Ohaio State Univeristy

Presented By: Ahmed Elbagoury

Outline

Motivation

•Related Work

- •Graph Sparsification
 - Global Sparsification
 - Local Sparsification
 - Minwise Hashing
- •Experimental Evaluation
- Conclusion
- Discussion

Motivation

- Man real problems can be modeled as graphs
- Analysing these graphs using clustering

Social Network community discovering

Motivation

•Many graph clustering algorithms have been proposed

•Scalability of these algorithm is a challenge

- •Large graphs are common in WWW domain
 - Facebook and Twitter

The goal is:

Develop a preprocessing step

- To speedup graph clustering algorithms
- Without loosing quality of the clusters

Not developing a clustering algorithm

Outline

Motivation

•Related Work

- •Graph Sparsification
 - Global Sparsification
 - Local Sparsification
 - Minwise Hashing
- •Experimental Evaluation
- •Conclusion
- •Discussion

Related Work

- •Preserving edge cut
 - Random Sampling
 - Edge Connectivity
 - Resistance of an edge
- •Edge filtering
 - Identifies the most interesting edges without keeping cluster structure
 - Inappropriates for unweight networks
- •Graph Sampling
 - Selects subset of edges and nodes
 - How to cluster missing nodes?!

Outline

Motivation

•Related Work

- •Graph Sparsification
 - Global Sparsification
 - Local Sparsification
 - Minwise Hashing
- •Experimental Evaluation
- •Conclusion
- •Discussion

Graph Sparsification

•The objective is scaling up clustering algorithms

•Reduce the size of the graph

•Sparsify the graph: Filter only some edges and retain all the nodes

Sparsification Method

•Clustering sparsified graph should be much faster than the original graph

•Retain good clustering quality compared to the clustering over the original graph

Fast sparsification method

Sparsification Method

Retain the intra-cluster edges compared to inter-cluster edges

Intra and inter edges

One way to differentiate between intra and inter edges is

- Edge betweenness centrality
 - Number of shortest paths between any two vertices that pass through the edge (i, j)
 - The higher the betweenness the higher the edge is an inter-cluster edge
 - Expensive to compute the betweenness

Similarity-based Sparsification Heuristic

•An edge (i, j) is likely to lie within a cluster

• If the vertices *i* and *j* have adjacency list with high overlap

•Jaccard measure quantifies the overlap between adjacency lists

$$Sim(i,j) = \frac{|Adj(i) \cap Adj(j)|}{|Adj(i) \cup Adj(j)|}$$

Global Sparsification (G-Spar)

•Each edge (i, j), will be assigned a similarity sim(i, j)

•Return the graph with the top s% of all the edges in the graph

• *s* is a sparsification parameter

Algorithm 1 Global Sparsification Algorithm
Input: Graph $G = (V, E)$, Sparsification ratio s
$G_{sparse} \leftarrow \emptyset$ for each edge $e=(i,j)$ in E do e.sim = Sim(i,j) according to Eqn 1 end for
Sort all edges in E by $e.sim$ Add the top $s\%$ edges to G_{sparse}
return G_{sparse}

Global Sparsification(G-Spar)

Using one global threshold is not suitable for multiple density clusters

Original graph

Globally sparsified graph

Local Sparsification (L-Spar)

•Avoid using a global threshold

•For each node i (with degree d_i), compute the similarity of each edge

•Pick the top $f(d_i) = d_i^e$

• Ensure that for each node, at least one of its incident edges is picked

•Adapt to different densities

Local Sparsification (L-Spar)

Original graph

Locally sparsified graph

FIGURES ARE FROM "LOCAL GRAPH SPARSIFICATION FOR SCALABLE CLUSTERING." PROCEEDINGS OF THE 2011 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA. ACM, 2011

Time Complexity

•For node i (with degree d_i) and node j (with degree d_j)

• Number of operations to intersect their adjacency lists is proportional to $d_i + d_j$

•A node of degree d_i requires d_i intersections

- The total number of operations is proportional to $\sum_i d_i^2$
- •The total number of operations is proportional to $n \cdot d^2_{avg}$
 - d_{avg} is the average degree of the graph

Prohibitively large for most graphs

•Min-wise hashing is as a technique for estimating the jaccard coefficient between sets A and B

•Let h be a hash function that maps the members of a set S of size n to the range $\{0, \dots, n-1\}$

•Define $h_{min}(S)$ to be $\min_{x \in S} h(x)$

• The member x of S with the minimum value of h(x)

•
$$h_{min}(S) = 4$$

• $h_{min}(A) = h_{min}(B)$ when $h_{min}(A)$ is in B

•Which means $h_{min(A \cup B)}$ lies in the intersection $A \cap B$

•This happens with probability $\frac{|Adj(i) \cap Adj(j)|}{|Adj(i) \cup Adj(j)|}$ Which is equal to sim(i,j)

A simple estimator for sim(A, B) is I[h_{min}(A) = h_{min}(B)]
I[x] = 1 if x is true and 0 otherwise.

•Hashing can be considered as a random permutation π on n numbers rather than a hash function

10
 12
 4
 7
 5
 3
 h
 5
 4
 1
 0
 3
 2

$$h_{min}(A) = 7$$
 $h_{min}(A) = 7$
 7
 4
 3
 5
 12
 10

 10
 12
 4
 7
 5
 3
 π
 7
 4
 3
 5
 12
 10

 first($\pi(A)$) = 7

 which is the first element in $\pi(A)$

This can be considered as a random permutation π on n numbers rather than a hash function

- •A simple estimator for sim(A, B) is $I[first(\pi(A)) = first(\pi(B))]$
- •This estimate has a high variance
 - It is always zero or one

To reduce variance, use k independent permutations π_i , i = 1: k

•To reduce variance, use k independent permutations π_i , i = 1: k

$$sim(A,B) = \frac{1}{k} \sum_{i=1}^{k} I[first(\pi_i(A)) = first(\pi_i(B))]$$

Generating Permutations

•Linear permutations

$$\pi(i) = (a * i + b)\% P$$

•*P* is large prime number

•*a* is an integer drawn uniformly at random from [1, P - 1]

• *b* is an integer drawn uniformly at random from [0, P - 1]

•Multiple linear permutations can be generated by generating random pairs of (*a*, *b*, *P*)

•Generate k linear permutations, by generating k triplets (a, b, P)

•Compute a length k signature for each node by minhashing its adjacency list k times

•Fill up a hashtable of size n * k

 $\bullet \forall (i,j) \in G$

- Compare the signatures of i and j
- Count the number of matching minhashes

•Sort the edges incident to a node *i* by the number of matches of each edge

•Include the top d_i^e inclusion in the sparsified graph

Outline

Motivation

•Related Work

- •Graph Sparsification
 - Global Sparsification
 - Local Sparsification
 - Minwise Hashing

•Experimental Evaluation

- •Conclusion
- •Discussion

Seven real-world datasets

- Three biological datasets: Yeast-BioGrid (BioGrid), Yeast-DIP (DIP), Human-PPI (Human)
- Wikipedia: an undirected version of the graph of hyperlinks between Wikipedia articles
- Three social networks datasets: Orkut, Twitter, Flickr tags
- Baselines
 - L-Sparse
 - G-Sparse
 - Random Edge Sampling
 - ForestFire
- All the experiments were performed on a PC with 16 GB RAM

•Average F-score (higher is better) when ground truth is available

•Average Conductance (lower is better) when ground truth is not available

• $\phi(S) = \frac{|(i,j) \ st \ i \in S, j \in \overline{S}|}{\min(|(i,j) \ st \ i \in S, j \in V|, \ |(i,j) \ st \ i \in \overline{S}, j \in V|)}$

•Four state-of- the-art algorithms for clustering

- Metis
- Metis+MQI
- MLR-MCL
- Graclus

				Cluster	ring Algo	orithm: Met	is				
	Original		Sparsified								
Dataset			Sp. Ratio	RandomEdge		G-Spar		ForestFire		L-Spar	
	F-score	Time (s)	sp. ratio	F-score	Spdup	F-score	Spdup	F-score	Spdup	F-score	Spdup
BioGrid	17.78	3.02	0.17	15.98	11x	15.15	30x	16.18	9x	19.71	25x
DIP	20.04	0.11	0.53	17.58	2x	19.38	2x	15.41	2x	21.58	2x
Human	8.96	0.59	0.39	7.75	4x	8.64	4x	7.47	4x	10.05	5x
Wiki	12.34	7485	0.15	9.11	8x	9.38	104x	9.96	7x	18.47	52x
	$\phi_{avg}(c_v)$			$\phi_{avg} (c_v)$		$\phi_{avg}(c_v)$		$\phi_{avg} (c_v)$		$\phi_{avg} (c_v)$	
Orkut	0.85(0.1)	14373	0.17	0.82(0.4)	13x	0.76(0.4)	30x	0.82(0.4)	12x	0.76(0.0)	36x
Flickr	0.87(2.5)	4.7	0.2	0.91(0.1)	8x	0.71(0.1)	1x	0.91(0.1)	9x	0.84(0.3)	3x
Twitter	<u>0.95</u> (0.1)	2307	0.04	1.0(0.4)	35x	0.97(0.0)	85x	0.99(0.4)	14x	0.96(1.7)	6x
				Clustering	g Algorit	hm: MLR-I	MCL				
	Original		Sparsified								
Dataset			Sp. Ratio	RandomEdge		G-Spar		ForestFire		L-Spar	
	F-score	Time (s)	-	F-score	Spdup	F-score	Spdup	F-score	Spdup	F-score	Spdup
BioGrid	23.95	8.44	0.17	20.28	6x	18.29	38x	20.55	7x	24.90	17x
DIP	24.85	0.28	0.53	20.57	3x	22.45	3x	18.51	3x	24.38	3x
Human	10.55	1.68	0.39	8.81	4x	9.21	6x	8.37	4x	10.43	5x
Wiki	20.22	7898	0.15	8.74	19x	9.3	92x	11.59	14x	19.3	23x
	$\phi_{avg} (c_v)$			$\phi_{avg} (c_v)$		$\phi_{avg} (c_v)$		$\phi_{avg} (c_v)$		$\phi_{avg} (c_v)$	
Orkut	0.78(6.4)	21079	0.17	0.85(1.2)	6x	0.91(10.1)	39x	0.86(1.1)	6x	0.78(0.5)	22x
Flickr	0.71(0.6)	16.56	0.2	0.83(2.2)	3x	0.72(3.6)	2x	0.88(1.9)	3x	0.70(0.7)	4x
Twitter	0.90(5.6)	14569	0.04	0.99(0.6)	63x	0.89(1.0)	188x	0.99(11.0)	16x	0.86 (4.3)	22x

				Clustering	g Algorit	hm: Metis+	MQI				
Dataset	Original		Sparsified								
			Sp. Ratio	RandomEdge		G-Spar		ForestFire		L-Spar	
	F-score	Time (s)	sp. ratio	F-score	Spdup	F-score	Spdup	F-score	Spdup	F-score	Spdup
BioGrid	23.16	4.0	0.17	19.76	11x	17.74	4x	19.13	11x	23.23	5x
DIP	23.09	0.32	0.53	19.55	1x	21.18	1x	16.09	2x	22.93	1x
Human	10.17	1.16	0.39	8.42	1x	9.1	1x	8.08	2x	10.28	1x
Wiki	19.21	35511	0.15	14.97	5x	9.98	360x	14.18	5x	18.32	0.46x
	$\phi_{avg}(c_v)$			$\phi_{avg}(c_v)$		$\phi_{avg}(c_v)$		$\phi_{avg}(c_v)$		$\phi_{avg}(c_v)$	
Orkut	0.756 (1.2)	19799	0.17	0.86(0.5)	2x	0.77(0.2)	1x	0.86(0.3)	3x	0.755 (1.2)	0.7x
Flickr	0.55 (14.1)	72.35	0.2	0.68(0.4)	3x	0.67(0.3)	1x	0.70(0.2)	5x	0.69(1.0)	4x
Twitter	0.86 (0.6)	11708	0.04	0.99(0.6)	35x	0.97(0.0)	334x	0.99(0.5)	19x	0.89(0.6)	14x
				$\mathbf{Clusteri}$	ing Algo	rithm: Grac	lus				
	Original		Sparsified								
Dataset			Sp. Ratio	Random	RandomEdge		G-Spar		ForestFire		L-Spar
	F-score	Time (s)	•	F-score	Spdup	F-score	Spdup	F-score	Spdup	F-score	Spdup
BioGrid	19.15	0.32	0.17	17.59	4x	16.56	2x	16.67	2x	21.42	2x
DIP	21.77	0.19	0.53	18.27	2x	21.27	3x	15.59	5x	22.45	1x
Human	9.53	0.81	0.39	8.03	2x	8.75	5x	7.47	6x	<u>9.90</u>	1x
	$\phi_{avg} (c_v)$			$\phi_{avg}(c_v)$		$\phi_{avg} (c_v)$		$\phi_{avg} (c_v)$		$\phi_{avg} (c_v)$	
Flickr	0.66 (1.3)	1.35	0.2	0.72(0.1)	2x	0.66(0.1)	1x	0.71(0.1)	2x	0.72(1.7)	2x
Twitter	<u>0.90</u> (2.4)	1518	0.04	1.0(0.7)	138x	0.97(0.0)	66x	0.99(0.6)	138x	0.91(0.9)	5x

Speedup and F-score as *e* changes

(a) F-score as *e* changes; Metis

(b) Speedup as e changes; Metis

0.5

Clust. Spar.

26

0.6

+Clust

15 13

0.7

Speedup and F-score as k changes

(e) F-score as k changes; Metis

200 Clust. 🗌 Spar. +Clust. 156 150 (x) dnpaedro 50 119 81 75 73 50 42 20 30 40 50 exact 10 k

Speedup (Wikipedia, Metis)

(f) Speedup as k changes; Metis

Conclusion

•Scaling clustering algorithm is an important task

- •Introduced an efficient and effective localized method to sparsify a graph
 - Retain only a fraction of the original number of edges
 - Handless multiple density clusters

•The proposed sparsification speeds up graph clustering algorithms without sacrificing quality

Thanks Questions?

Discussion

Implementing the sparsification method on multiple machines

- How to partition the data?
- Some framework doesn't support Graph mutations: GraphLab and PowerGraph

How to handle streams (incremental clustering)?

- Will we need to re-cluster
- Will the density change, do we need to change e

Can we use other measures that takes in account edge weight and edge direction?

How to handle outliers more efficiently?