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Background 

 MapReduce facilitates large scale data analysis

 Users have complex tasks to express as one MapReduce job

 Express complex tasks using high level query languages such as Pig, Hive or Jaql

3The figure is from "Comparing High Level MapReduce Query Languages" paper



Background

 The compilers of these high-level query languages translate queries into workflows 
of MapReduce jobs
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Workflow of MapReduce Jobs 

 Each job produces output that is stored in the distributed file system (DFS) used by 
the MapReduce system

 These intermediate results are used as inputs by subsequent jobs in the workflow

 These intermediate jobs are deleted from the DFS after finishing the workflow
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Reusing Intermediate Results

 Saving the intermediate results so that future jobs can use them

 Similar to the materialized views in RDBMS

6The figure is from I.Elghandour's Presentation
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Restore

 Restore improves the performance of workflows of MapReduce jobs by

 Storing the intermediate results of executed workflows and 

 Reusing them in future workflows

 The system is not limited to 

 The queries that are executed concurrently

 Sharing one operator between multiple queries

 Is sharing results important?

 Facebook stores the result of any query in its MapReduce cluster for seven days 
for sharing purposes
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Example of Two Queries

Return the estimated revenue for 
each user viewing web pages

Return the total estimated revenue 
for each user viewing web pages, 
grouped by user name
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Example of Two Queries

 The MapReduce workflow for query Q2 after rewriting it to reuse the output of query 
Q1
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Types of Result Reuse

Time to execute 𝐽𝑜𝑏𝑛 is

𝑇𝑡𝑜𝑡𝑎𝑙 𝐽𝑜𝑏𝑛 = 𝐸𝑇 𝐽𝑜𝑏𝑛 +max
i∊𝑌
{𝑇𝑡𝑜𝑡𝑎𝑙 (𝐽𝑜𝑏𝑖)}

Two types of reuse opportunities

1. Whole job: Reduces  max
i∊𝑌
{𝑇𝑡𝑜𝑡𝑎𝑙 (𝐽𝑜𝑏𝑖)}

2. Operators in jobs (sub jobs):  Reduces 𝐸𝑇 𝐽𝑜𝑏𝑛
in future jobs
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Reusing the Whole Job

𝑇𝑡𝑜𝑡𝑎𝑙 𝐽𝑜𝑏𝑛 = 𝐸𝑇 𝐽𝑜𝑏𝑛 +max
i∊𝑌
{𝑇𝑡𝑜𝑡𝑎𝑙 (𝐽𝑜𝑏𝑖)}

 If the results of all dependent jobs of 𝐽𝑜𝑏𝑛 are stored in the system, then

𝑇𝑡𝑜𝑡𝑎𝑙 𝐽𝑜𝑏𝑛 = 𝐸𝑇 𝐽𝑜𝑏𝑛

 If the results of subset  𝑋 ⊂ 𝑌of dependent jobs are not stored then
 𝑇𝑡𝑜𝑡𝑎𝑙 𝐽𝑜𝑏𝑛 is reduced only if max

i∊𝑋
{𝑇𝑡𝑜𝑡𝑎𝑙 (𝐽𝑜𝑏𝑖)} is less than max

i∊𝑌
{𝑇𝑡𝑜𝑡𝑎𝑙 (𝐽𝑜𝑏𝑖)}
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Reusing Sub-job
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𝐸𝑇 𝐽𝑜𝑏𝑛 = 𝑇𝑙𝑜𝑎𝑑 +  

𝑖

𝐸𝑇 𝑂𝑃𝑖 + 𝑇𝑠𝑜𝑟𝑡 + 𝑇𝑠𝑡𝑜𝑟𝑒



We need to answer two questions

1. How to rewrite a MapReduce job using stored intermediate 
results?

2. How to populate the repository with intermediate results?
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System Architecture

Restore has three main components

1. Plan Matcher and Rewriter

2. Sub-job Enumerator

3. Enumerated Sub-job Selector

The input is: 

 Workflow of MapReduce jobs

The outputs are

 Modified MapReduce jobs

 Job outputs to store in the DFS

17



1-Plan Matcher and Rewriter
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1-Plan Matcher  and Rewriter

 Restore repository contains 
 Outputs of previous MapReduce jobs

 Physical query execution plans of these jobs

 Statistics about these MapReduce jobs

 The goal is to find physical plans in the repository that can be used to rewrite the 
jobs of the input workflow
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Matching Algorithm (1)

 Matching and rewriting are performed on the physical plan
 Matching is simple and robust 

 It is easy to adapt Restore to any dataflow system regardless of the input language

 A physical plan is considered a match if it is contained in the input MapReduce job

 The matching is based on operator equivalence, two operators are equivalent if:
 If their inputs are pipelined from two equivalent operators or from the same data sets

 They perform functions that produce the same output data

20



Matching Algorithm (2)

 Both plans are traversed simultaneously starting from load operators until

 Mismatching operators are found

 All the operators of the repository plan have equivalent matches in the input 
MapReduce plan

 The matched part of the input physical plan is replaced by a load operator that 
reads the output of the matched plan from the DFS

 More than one plan in the repository can be used to rewrite the input job
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Matching Algorithm (3)

 The first match that Restore finds, is used to rewrite the input MapReduce job
 The matching becomes more efficient

 The physical plans in the repository must be ordered

 Ordering physical plans in the repository

 If plan 𝐴 subsumes plan 𝐵 (all operators in plan 𝐵 have equivalent operators in 𝐴)

 If neither of 𝐴 and 𝐵 subsumes the other:
 The ratio between the size of the input data and the output data

 The execution time of the MapReduce job
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We need to answer two questions

1. How to rewrite a MapReduce job using stored intermediate 
results?

2. How to populate the repository with intermediate results?
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Generating Candidate Sub-jobs
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Generating Candidate Sub-jobs

 The outputs of whole MapReduce jobs and some sub-jobs are saved

 Materializing the outputs of all sub-jobs is infeasible
 Substantial amount of storage in the DFS

 It will slow down the execution

 Which sub-jobs should we choose?
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Choosing Candidate Sub-jobs

𝐸𝑇 𝐽𝑜𝑏𝑛 = 𝑇𝑙𝑜𝑎𝑑 +  

𝑖

𝐸𝑇 𝑂𝑃𝑖 + 𝑇𝑠𝑜𝑟𝑡 + 𝑇𝑠𝑡𝑜𝑟𝑒

Good sub-job candidates:

 Operators that reduce the size of their inputs, like: filter, project

 Expensive operators: Join and Group
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Heuristics for Choosing Candidate Sub-jobs

1. Conservative Heuristic

 Operators that reduce their input size: project and Filter

2. Aggressive Heuristic

 Operators that reduce their input size and expensive operators: 

Project, Filter, Join and Group

Conservative heuristic imposes less overhead but creates less reusing 
opportunities
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Choosing Candidate Sub-jobs

For each operator in the physical plan

 Check the used heuristic 

 Inject a store operator 
after it (if it is not a store operator)

 Split the flow into two sub-flows

Generated jobs are stored in 
order the makes the matching 
efficient
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Enumerated Sub-job Selector

 Keeping all generated jobs and sub-jobs is expensive 

 Storage space

 Too many plans to match in the future workflows

 Decide which outputs to keep

 The decision is made after executing the workflow 

 Based on the collected statistics
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Enumerated Sub-job Selector
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Enumerated Sub-job Selector

Keep the output of a job if 

 It reduces the execution time when it is used:

 The size of it is output is less than the size of it is input

 It reduces the execution time of workflows that use it
𝑇𝑡𝑜𝑡𝑎𝑙 𝐽𝑜𝑏𝑛 = 𝐸𝑇 𝐽𝑜𝑏𝑛 +𝒎𝒂𝒙

𝒊∊𝒀
{𝑻𝒕𝒐𝒕𝒂𝒍 (𝑱𝒐𝒃𝒊)}

 It is actually used

 Frequency of usage within time window

 Deletion or modification of its input
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Experiments

 ReStore implemented as an extension to Pig 0.8

 Experiments run on a cluster of 15 nodes, 
each with four Dual Core AMD Opteron CPUs, 
8GB of memory, and a 65GB SCSI disk

 PigMix benchmark, 150GB data size and 15 GB data size

 Synthetic data with 40GB data size (200 million rows)
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Reusing the Output of Whole Jobs

 Assuming all outputs needed for reusing are available
 Best results the can be achieved

 Speed up is 9.2 with 0% overhead (no extra store operators are inserted)
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Reusing the Output of sub-Jobs

35

 Average speedup is 24.4

 Overhead for injecting stores, on average 1.6



Reusing the Output of sub-Jobs
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Overhead of 15GB is 2.5
Overhead of 150GB is 1.6

Speedup of 15GB is 3.0
Speedup of 150GB is 24.4

Reusing outputs of sub-jobs is more beneficial for larger data sizes



Comparing the Heuristics
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Execution time when using sub-jobs Execution time with insert operator



Effect of Data Reduction
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As the amount of data reduction due to projection or filtering decreases, the overhead 
increases and the speedup decreases.
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Conclusion

 ReStore: a system that reuses intermediate outputs of MapReduce
jobs in a workflow to speed up future workflows

 Creates additional reuse opportunities by storing the results of sub-jobs
 Aggressive vs. conservative heuristic

 Implemented as part of the Pig system

 Significant speedups on the PigMix benchmark

40
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Questions?



Discussion

 Will we need load balancing after injecting store operators?
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Discussion

 Will we need load balancing after injecting store operators?

 Sharing between concurrent workflows and keep the output in memory?

 Can we make better decisions if we know the workload?

 How this can be integrated with pay-as-you-go paradigm?
 Virtual infinite storage

 Storage cost

 Computing cost

 Can’t make decision after storing

 Predict running time and storage need

 Using two level storage and 

 Instead of removing a record it will be moved to the second level storage
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Thanks
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