
RESTORE: REUSING RESULTS OF MAPREDUCE

JOBS

Presented by: Ahmed Elbagoury

Outline

 Background & Motivation

 What is Restore?

 Types of Result Reuse

 System Architecture

 Experiments

 Conclusion

 Discussion

Background

 MapReduce facilitates large scale data analysis

 Users have complex tasks to express as one MapReduce job

 Express complex tasks using high level query languages such as Pig, Hive or Jaql

3The figure is from "Comparing High Level MapReduce Query Languages" paper

Background

 The compilers of these high-level query languages translate queries into workflows
of MapReduce jobs

4

Workflow of MapReduce Jobs

 Each job produces output that is stored in the distributed file system (DFS) used by
the MapReduce system

 These intermediate results are used as inputs by subsequent jobs in the workflow

 These intermediate jobs are deleted from the DFS after finishing the workflow

5

Reusing Intermediate Results

 Saving the intermediate results so that future jobs can use them

 Similar to the materialized views in RDBMS

6The figure is from I.Elghandour's Presentation

Outline

 Background & Motivation

 What is Restore?

 Types of Result Reuse

 System Architecture

 Experiments

 Conclusion

 Discussion

Restore

 Restore improves the performance of workflows of MapReduce jobs by

 Storing the intermediate results of executed workflows and

 Reusing them in future workflows

 The system is not limited to

 The queries that are executed concurrently

 Sharing one operator between multiple queries

 Is sharing results important?

 Facebook stores the result of any query in its MapReduce cluster for seven days
for sharing purposes

8

Example of Two Queries

Return the estimated revenue for
each user viewing web pages

Return the total estimated revenue
for each user viewing web pages,
grouped by user name

9

Example of Two Queries

 The MapReduce workflow for query Q2 after rewriting it to reuse the output of query
Q1

10

Outline

 Background & Motivation

 What is Restore

 Types of Result Reuse

 System Architecture

 Experiments

 Conclusion

 Discussion

Types of Result Reuse

Time to execute 𝐽𝑜𝑏𝑛 is

𝑇𝑡𝑜𝑡𝑎𝑙 𝐽𝑜𝑏𝑛 = 𝐸𝑇 𝐽𝑜𝑏𝑛 +max
i∊𝑌
{𝑇𝑡𝑜𝑡𝑎𝑙 (𝐽𝑜𝑏𝑖)}

Two types of reuse opportunities

1. Whole job: Reduces max
i∊𝑌
{𝑇𝑡𝑜𝑡𝑎𝑙 (𝐽𝑜𝑏𝑖)}

2. Operators in jobs (sub jobs): Reduces 𝐸𝑇 𝐽𝑜𝑏𝑛
in future jobs

12

Reusing the Whole Job

𝑇𝑡𝑜𝑡𝑎𝑙 𝐽𝑜𝑏𝑛 = 𝐸𝑇 𝐽𝑜𝑏𝑛 +max
i∊𝑌
{𝑇𝑡𝑜𝑡𝑎𝑙 (𝐽𝑜𝑏𝑖)}

 If the results of all dependent jobs of 𝐽𝑜𝑏𝑛 are stored in the system, then

𝑇𝑡𝑜𝑡𝑎𝑙 𝐽𝑜𝑏𝑛 = 𝐸𝑇 𝐽𝑜𝑏𝑛

 If the results of subset 𝑋 ⊂ 𝑌of dependent jobs are not stored then
 𝑇𝑡𝑜𝑡𝑎𝑙 𝐽𝑜𝑏𝑛 is reduced only if max

i∊𝑋
{𝑇𝑡𝑜𝑡𝑎𝑙 (𝐽𝑜𝑏𝑖)} is less than max

i∊𝑌
{𝑇𝑡𝑜𝑡𝑎𝑙 (𝐽𝑜𝑏𝑖)}

13

Reusing Sub-job

14

𝐸𝑇 𝐽𝑜𝑏𝑛 = 𝑇𝑙𝑜𝑎𝑑 +

𝑖

𝐸𝑇 𝑂𝑃𝑖 + 𝑇𝑠𝑜𝑟𝑡 + 𝑇𝑠𝑡𝑜𝑟𝑒

We need to answer two questions

1. How to rewrite a MapReduce job using stored intermediate
results?

2. How to populate the repository with intermediate results?

15

Outline

 Background & Motivation

 What is Restore

 Types of Result Reuse

 System Architecture

 Experiments

 Conclusion

 Discussion

System Architecture

Restore has three main components

1. Plan Matcher and Rewriter

2. Sub-job Enumerator

3. Enumerated Sub-job Selector

The input is:

 Workflow of MapReduce jobs

The outputs are

 Modified MapReduce jobs

 Job outputs to store in the DFS

17

1-Plan Matcher and Rewriter

18

1-Plan Matcher and Rewriter

 Restore repository contains
 Outputs of previous MapReduce jobs

 Physical query execution plans of these jobs

 Statistics about these MapReduce jobs

 The goal is to find physical plans in the repository that can be used to rewrite the
jobs of the input workflow

19

Matching Algorithm (1)

 Matching and rewriting are performed on the physical plan
 Matching is simple and robust

 It is easy to adapt Restore to any dataflow system regardless of the input language

 A physical plan is considered a match if it is contained in the input MapReduce job

 The matching is based on operator equivalence, two operators are equivalent if:
 If their inputs are pipelined from two equivalent operators or from the same data sets

 They perform functions that produce the same output data

20

Matching Algorithm (2)

 Both plans are traversed simultaneously starting from load operators until

 Mismatching operators are found

 All the operators of the repository plan have equivalent matches in the input
MapReduce plan

 The matched part of the input physical plan is replaced by a load operator that
reads the output of the matched plan from the DFS

 More than one plan in the repository can be used to rewrite the input job

21

Matching Algorithm (3)

 The first match that Restore finds, is used to rewrite the input MapReduce job
 The matching becomes more efficient

 The physical plans in the repository must be ordered

 Ordering physical plans in the repository

 If plan 𝐴 subsumes plan 𝐵 (all operators in plan 𝐵 have equivalent operators in 𝐴)

 If neither of 𝐴 and 𝐵 subsumes the other:
 The ratio between the size of the input data and the output data

 The execution time of the MapReduce job

22

We need to answer two questions

1. How to rewrite a MapReduce job using stored intermediate
results?

2. How to populate the repository with intermediate results?

23

Generating Candidate Sub-jobs

24

Generating Candidate Sub-jobs

 The outputs of whole MapReduce jobs and some sub-jobs are saved

 Materializing the outputs of all sub-jobs is infeasible
 Substantial amount of storage in the DFS

 It will slow down the execution

 Which sub-jobs should we choose?

25

Choosing Candidate Sub-jobs

𝐸𝑇 𝐽𝑜𝑏𝑛 = 𝑇𝑙𝑜𝑎𝑑 +

𝑖

𝐸𝑇 𝑂𝑃𝑖 + 𝑇𝑠𝑜𝑟𝑡 + 𝑇𝑠𝑡𝑜𝑟𝑒

Good sub-job candidates:

 Operators that reduce the size of their inputs, like: filter, project

 Expensive operators: Join and Group

26

Heuristics for Choosing Candidate Sub-jobs

1. Conservative Heuristic

 Operators that reduce their input size: project and Filter

2. Aggressive Heuristic

 Operators that reduce their input size and expensive operators:

Project, Filter, Join and Group

Conservative heuristic imposes less overhead but creates less reusing
opportunities

27

Choosing Candidate Sub-jobs

For each operator in the physical plan

 Check the used heuristic

 Inject a store operator
after it (if it is not a store operator)

 Split the flow into two sub-flows

Generated jobs are stored in
order the makes the matching
efficient

28

Enumerated Sub-job Selector

 Keeping all generated jobs and sub-jobs is expensive

 Storage space

 Too many plans to match in the future workflows

 Decide which outputs to keep

 The decision is made after executing the workflow

 Based on the collected statistics

29

Enumerated Sub-job Selector

30

Enumerated Sub-job Selector

Keep the output of a job if

 It reduces the execution time when it is used:

 The size of it is output is less than the size of it is input

 It reduces the execution time of workflows that use it
𝑇𝑡𝑜𝑡𝑎𝑙 𝐽𝑜𝑏𝑛 = 𝐸𝑇 𝐽𝑜𝑏𝑛 +𝒎𝒂𝒙

𝒊∊𝒀
{𝑻𝒕𝒐𝒕𝒂𝒍 (𝑱𝒐𝒃𝒊)}

 It is actually used

 Frequency of usage within time window

 Deletion or modification of its input

31

Outline

 Background & Motivation

 What is Restore

 Types of Result Reuse

 System Architecture

 Experiments

 Conclusion

 Discussion

Experiments

 ReStore implemented as an extension to Pig 0.8

 Experiments run on a cluster of 15 nodes,
each with four Dual Core AMD Opteron CPUs,
8GB of memory, and a 65GB SCSI disk

 PigMix benchmark, 150GB data size and 15 GB data size

 Synthetic data with 40GB data size (200 million rows)

33

Reusing the Output of Whole Jobs

 Assuming all outputs needed for reusing are available
 Best results the can be achieved

 Speed up is 9.2 with 0% overhead (no extra store operators are inserted)

34

Reusing the Output of sub-Jobs

35

 Average speedup is 24.4

 Overhead for injecting stores, on average 1.6

Reusing the Output of sub-Jobs

36

Overhead of 15GB is 2.5
Overhead of 150GB is 1.6

Speedup of 15GB is 3.0
Speedup of 150GB is 24.4

Reusing outputs of sub-jobs is more beneficial for larger data sizes

Comparing the Heuristics

37

Execution time when using sub-jobs Execution time with insert operator

Effect of Data Reduction

38

As the amount of data reduction due to projection or filtering decreases, the overhead
increases and the speedup decreases.

Outline

 Background & Motivation

 What is Restore

 Types of Result Reuse

 System Architecture

 Experiments

 Conclusion

 Discussion

Conclusion

 ReStore: a system that reuses intermediate outputs of MapReduce
jobs in a workflow to speed up future workflows

 Creates additional reuse opportunities by storing the results of sub-jobs
 Aggressive vs. conservative heuristic

 Implemented as part of the Pig system

 Significant speedups on the PigMix benchmark

40

41

Questions?

Discussion

 Will we need load balancing after injecting store operators?

42

Discussion

 Will we need load balancing after injecting store operators?

 Sharing between concurrent workflows and keep the output in memory?

43

Discussion

 Will we need load balancing after injecting store operators?

 Sharing between concurrent workflows and keep the output in memory?

 Can we make better decisions if we know the workload?

44

Discussion

 Will we need load balancing after injecting store operators?

 Sharing between concurrent workflows and keep the output in memory?

 Can we make better decisions if we know the workload?

 How this can be integrated with pay-as-you-go paradigm?
 Virtual infinite storage

 Storage cost

 Computing cost

 Can’t make decision after storing

 Predict running time and storage need

 Using two level storage and

 Instead of removing a record it will be moved to the second level storage

45

46

Thanks

References

 Elghandour, Iman, and Ashraf Aboulnaga. "ReStore: reusing results of MapReduce
jobs." Proceedings of the VLDB Endowment 5.6 (2012): 586-597

 Gates, Alan F., et al. "Building a high-level dataflow system on top of Map-Reduce:
the Pig experience." Proceedings of the VLDB Endowment 2.2 (2009): 1414-1425

 Nguyen, Thi-Van-Anh, et al. "Cost models for view materialization in the
cloud."Proceedings of the 2012 Joint EDBT/ICDT Workshops. ACM, 2012

 Stewart, Robert J., Phil W. Trinder, and Hans-Wolfgang Loidl. "Comparing high level
mapreduce query languages." Advanced Parallel Processing Technologies. Springer
Berlin Heidelberg, 2011. 58-72.

47

