
On Brewing Fresh Espresso:
LinkedIn’s Distributed Data Serving Platform

Lin Qiao, Kapil Surlaker, Shirshanka Das, Tom Quiggle, Bob
Schulman, Bhaskar Ghosh, Antony Curtis, Oliver Seeliger, Zhen
Zhang, Aditya Auradkar, Chris Beavers, Gregory Brandt, Mihir

Gandhi, Kishore Gopalakrishna, Wai Ip, Swaroop Jagdish, Shi Lu,
Alexander Pachev, Aditya Ramesh, Abraham Sebastian, Rupa

Shanbhag, Subbu Subramanium, Yun Sun, Sajid Topiwala, Coung
Tran, Jemiah Westerman, David Zhang

SIGMOD’13, June 22-27, 2013, New York, New York, USA.

OUTLINE

• Introduction

• Features

• External Interface

• System Architecture

• Implementation

• Experimental Evaluation

• Summary

INTRODUCTION

• Espresso: A document oriented, distributed data
serving platform.

• LinkedIn’s requirements:
– Scale and Elasticity

– Consistency

– Integration

– Bulk Operations

– Secondary Indexing

– Schema Evolution

– Cost to Serve

FEATURES

• Transaction Support

• Consistency Model

• Integration with the complete data ecosystem

• Schema Awareness and Rich functionality

EXTERNAL INTERFACE

• Data Model

• API

• Bulk load and Export

EXTERNAL INTERFACE: Data model

• The two primary forms of relationships:

– Nested Entities

– Independent Entities

• Document

• Table

• Document Group

• Database

EXTERNAL INTERFACE: API

• REST API

• The capabilities provided to the application
developer:

– Read Operations

– Write Operations

– Conditionals

– Multi Operations

– Change Stream Listeners

EXTERNAL INTERFACE: Bulk load and export

• Efficient ingestion of large amounts of data
from offline environments like Hadoop into
Espresso.

• Data Export is important to support ETL and
other offline data analysis use-cases.

SYSTEM ARCHITECTURE

IMPLEMENTATION

• Secondary Index

• Partitions and Replicas

• Internal Clock and Timeline

• Replication and Consistency

• Fault Tolerance

• Cluster Expansion

• Multi Datacenter

IMPLEMENTATION: Secondary indexing

• Fundamental building block: Inverted Index

• Local secondary indexes

– Secondary indexes on document groups

• Global secondary indexes

– Secondary indexes on independent entities.

• First attempt: Lucene

• Second attempt (indexing solution) : Prefix

IMPLEMENTATION: Partitions and replicas

• Partition of data is performed to serve the
following purposes:
– Load balancing

– Efficient and predictable cluster expansion

• Data is partitioned into a large number of
partitions.

• Over partitioning keeps partition size small.

• Each partition is mastered at one node and
replicated on N nodes.

IMPLEMENTATION: Internal clock and timeline

• Each database partition operates as an independent commit
log.

• Each commit log acts as a timeline of data change events that
occurred on that partition.

• A timeline consists of ordered sets of changes in the partition.

IMPLEMENTATION : Replication and consistency

• Consistency is ensured with the help of

consistency checker.

IMPLEMENTATION: Fault tolerance

• Each component in Espresso is fault tolerant.

• Storage node Failure:
– Helix calculates a new set of master partitions

from existing slaves.

• Failure Detection: Helix
– Zookeeper heartbeat for hard failure

– Monitor performance metrics reported by the
router and the storage nodes

• Data bus is also fault tolerant

IMPLEMENTATION: Cluster expansion

 New storage nodes can be added as the data
size or the request rate approaches the
capacity limit of a cluster.

IMPLEMENTATION: Multi data center

 A warm standby is located in a geographically
remote location to assume responsibility in
the event of a disaster.

EXPERIMENTAL EVALUATION

• Availability

• Elasticity

• Performance

EXPERIMENTAL EVALUATION: Availability

EXPERIMENTAL EVALUATION: Elasticity

EXPERIMENTAL EVALUATION: Performance

SUMMARY

• Espresso is a distributed document oriented
database.

• It is timeline consistent, provides rich operations
on documents and supports seamless integration
with near line and online environments.

• Espresso uses master-slave architecture.
• Apache Helix, uses Zookeeper as the coordination

service to store cluster metadata.
• Espresso has been developed in Java and is in

production since June 2012.

