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INTRODUCTION 

• Espresso: A document oriented, distributed data 
serving platform. 

• LinkedIn’s requirements: 
– Scale and Elasticity 

– Consistency 

– Integration 

– Bulk Operations 

– Secondary Indexing 

– Schema Evolution 

– Cost to Serve 



FEATURES 

• Transaction Support 

• Consistency Model 

• Integration with the complete data ecosystem 

• Schema Awareness and Rich functionality 

 



EXTERNAL INTERFACE 

• Data Model 

• API 

• Bulk load and Export 



EXTERNAL INTERFACE: Data model 

• The two primary forms of relationships: 

– Nested Entities 

– Independent Entities 

• Document 

• Table 

• Document Group 

• Database 



EXTERNAL INTERFACE: API 

• REST API 

• The capabilities provided to the application 
developer: 

– Read Operations 

– Write Operations 

– Conditionals 

– Multi Operations 

– Change Stream Listeners 



EXTERNAL INTERFACE: Bulk load and export 

• Efficient ingestion of large amounts of data 
from offline environments like Hadoop into 
Espresso. 

 

• Data Export is important to support ETL and 
other offline data analysis use-cases. 



SYSTEM ARCHITECTURE 



IMPLEMENTATION 

• Secondary Index 

• Partitions and Replicas 

• Internal Clock and Timeline 

• Replication and Consistency 

• Fault Tolerance 

• Cluster Expansion 

• Multi Datacenter 



IMPLEMENTATION: Secondary indexing 

• Fundamental building block: Inverted Index 

• Local secondary indexes 

– Secondary indexes on document groups 

• Global secondary indexes 

– Secondary indexes on independent entities. 

• First attempt: Lucene 

• Second attempt (indexing solution) : Prefix 

 

 



IMPLEMENTATION: Partitions and replicas 

• Partition of data is performed to serve the 
following purposes: 
– Load balancing 

– Efficient and predictable cluster expansion 

• Data is partitioned into a large number of 
partitions. 

• Over partitioning  keeps partition size small. 

• Each partition is mastered at one node and 
replicated on N nodes. 

 



IMPLEMENTATION: Internal clock and timeline 

• Each database partition operates as an independent commit 
log. 

• Each commit log acts as a timeline of data change events that 
occurred on that partition. 

• A timeline consists of ordered sets of changes in the partition. 



IMPLEMENTATION : Replication and consistency 

 
 
 
 
 
 
 
 
• Consistency is ensured with the help of 

consistency checker. 
 



IMPLEMENTATION: Fault tolerance 

• Each component in Espresso is fault tolerant. 

• Storage node Failure: 
– Helix calculates a new set of master partitions 

from existing slaves. 

• Failure Detection: Helix 
– Zookeeper heartbeat for hard failure 

– Monitor performance metrics reported by the 
router and the storage nodes 

• Data bus is also fault tolerant 

 

 



IMPLEMENTATION: Cluster expansion 

 

    New storage nodes can be added as the data 
size or the request rate approaches the 
capacity limit of a cluster. 

 



IMPLEMENTATION: Multi data center 

 

    A warm standby is located in a geographically 
remote location to assume responsibility in 
the event of a disaster. 



EXPERIMENTAL EVALUATION 

• Availability 

• Elasticity 

• Performance 

 



EXPERIMENTAL EVALUATION: Availability 



EXPERIMENTAL EVALUATION: Elasticity 



EXPERIMENTAL EVALUATION: Performance 



SUMMARY 

• Espresso is a distributed document oriented 
database. 

• It is timeline consistent, provides rich operations 
on documents and supports seamless integration 
with near line and online environments. 

• Espresso uses master-slave architecture. 
• Apache Helix, uses Zookeeper as the coordination 

service to store cluster metadata. 
• Espresso has been developed in Java and is in 

production since June 2012. 


