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Objectives 

• Comparing NoSQL systems with native triple 
stores 

• Finding performance similarities between 
systems 

• Providing  an environment for replicable tests 

– (paper’s website is not available anymore!) 

• Not choosing a “winner” among systems 
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Evaluated Systems  

Systems selected based on two factors:  

– Current extensions on NoSQL for supporting RDF 

– Covering different NoSQL system types  

  

 
Storage System Type 

CouchDB Document Based  

Cassandra Key-Value/Column store 

HBase Key-Value/Column store 

4store (Baseline) Distributed RDF DBMS 
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4store Architecture 

1- Parses queries 
2- Handles distributed communication 

Stores actual data 

Figure taken from [1] 
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4store 

• RDF data stored as quads:  

– (model, subject, predicate, object) 

• Encodes URIs, literals and blank nodes as 
numbers 

• Keeps data in property tables 

• Divides data among non-overlapping 
segments based on “subject”  

segment = (subject code) mod segments 
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4store Indices 

• P indices 
– Two P indices per predicate :  

• Based on Subject(s p ?)  Find Objects for given PS 

• Based on Object (? p o) Find Subjects for given PO 

• (? ? o) or (s ? ?)  Search all P indices  

• R index 
– Maps encoded hash value of P,O,S  String 

• M index 
– For a given model  List of all triples 
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HBase 

• Column-oriented NoSQL  

• Columns grouped into Column Families 

• Data Sorted lexicographically by row-key 

• Multi-dimensional: row, column, timestamp 

• Relies on HDFS 

• Integrated by Hadoop (MapReduce) 
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Jena+HBase 

Schema : Leverages sorted row-keys in HBase 

• Maps literals, URIs  8-byte ids  

• RDF data is stored in three index tables  

– SPO,POS and OSP 

 
Row-Key ColName Empty 

SPO1 Empty 

SPO2 Empty 

……. …….. 

Row-Key ColName Empty 

POS1 Empty 

POS2 Empty 

……. …….. 

Row-Key ColName Empty 

OSP1 Empty 

OSP2 Empty 

……. …….. 

(s ? ?) , (s p ?) (? p o) , (? p ?) (? ? o) , (s ? o) 
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Jena+HBase 

HBase(RDF Store) 

SELECT ?x ?y ?z WHERE { ?z ub:subOrganizationOf ?y 
. ?y rdf:type ub:University . ?z rdf:type 
ub:Department . ?x ub:memberOf ?z . ?x rdf:type 
ub:GraduateStudent . ?x 
ub:undergraduateDegreeFrom ?y . } 

Jena 

BGP triple 

Query Plan 
 (Tree of iterators) 
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Figure adopted from [2] 

Optimization 
pushing down 

SPARQL filters on 
numbers 
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Hive+HBase 

Schema :  

• Compressed subjects are row-keys  

• TimeStamps used to store multi-valued 
objects 

Row-Key TimeStamp Predicate1 Predicate2 

Compressed Subject1 1 Object1 Object11 

2 Object4 Empty 

3 Object7 Empty 

……. ……… …….. ……… 



13 

Hive+HBase 

Unique Subjects are identified in query’s BGP by Jena 
ARQ  

For each Subject a temporary Hive Table is created 
containing requested predicates and objects 

Join conditions are identified to see which temp 
tables need to be joined 

Hive queries for joins are executed by MapReduce 
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CumulusRDF 

• RDF Store based on Cassandra+Sesame 

 

• Cassandra indices: 

– Hash index based on row-key 

– Sorted index for column names(columns are sorted) 

– Secondary index mapping values to row-key 
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CumulusRDF 

Schema: leverages Cassandra indices 

 Row-
Key 

ColName
PO1 

ColName
PO2 
 

S1 Empty Empty 

S2 Empty Empty 

……. …….. 

(s ? ?) , (s p ?) 

Row-
Key 

ColName
 SP1 

ColName
 SP2 

O1 Empty Empty 

O2 Empty Empty 

……. …….. …….. 

(? ? o) , (s ? o) 

Row-
Key 

ColName
 S1 

ColName
 S2 

PO1 Empty Empty 

PO2 Empty Empty 

……. …….. …….. 

Row-
Key 

ColName
 P1 

ColName
 P2 

PO1 P1 Empty 

PO2 Empty p2 

……. …….. …….. 

(? p o) (? p ?) (not used here)  
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CumulusRDF 

Query 

• “Sesame is a powerful Java framework for 
processing and handling RDF data”[3] 

 

• Sesame translates SPARQL queries to index 
lookups on Cassandra indices 

 

• Sesame processes joins and filters 
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Couchbase 

• NoSQL document-oriented database  

• Supports JSON documents 

Schema 

• RDF data is serialized to JSON Documents 

• Subjects are document IDs 

• Two JSON arrays for predicates and objects in 
each document  
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Couchbase 

Query 

• Query execution is based on Jena SPARQL 
engine (similar to HBase)  

• Three Couchbase views are built to cover  

     (? p ?), (? ? o), (? p o)  

• For patterns including subject the entire JSON 
document is retrieved and parsed 
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Experimental Setting 

• Benchmarks: 

– Berlin SPARQL Benchmark(BSBM) 

• ~ 10 million triples (Scale Factor: 28,850) 

• ~ 100 million triples(Scale Factor: 284,826) 

• ~ 1 billion triples(Scale Factor: 2,878,260) 

– DBpedia SPARQL Benchmark(DBPSB) 

• 153,737,783 triples (Scale Factor: 100%) 
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Results <4store> 

• Query time decreases 
as #nodes increases 

• Response time is sub- 
second for 10-100M 
triples 

• 4store is slow for 
queries touching a lot 
of data (Q5) 

• 4store times out for 
loading 1 billion triples  

Figure taken from [4] 
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Results <4store> 

• 4store is not scalable for DBpedia benchmark  

highly complex dataset  too much fragmentation 
high network delays 

Figure taken from [4] 
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Results <Jena+HBase> 

• Sub-second query 
time for highly 
selective queries 
(Q2,Q8,Q9,Q11,Q12) 

• System is slow for 
queries touching a lot 
of data (Q5,Q7) 

• System times out for 
Q10 that has a filter 
on date  

Figure taken from [4] 
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Results <Jena+HBase> 

• Sub-second query time almost for all queries 

– Many duplicated rows are removed during loading 

– Queries are simpler than BSBM 

• Q17 is slower due to filter on string 

• Not scalable for this dataset 
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Result<Hive+HBase> 

• Query time 
decreases as #nodes 
increase 

• MapReduce shuffle 
stage increases 
query time (minute) 

• Q7 is slowest (needs 
4 MapReduce jobs) 
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Result<Hive+HBase> 

• Scalable 

• Low query time due to simpler queries with 
almost no join (comparing with BSBM)  

 
Figure taken from [4] 
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Result<CulumusRDF> 

• Performance decreases 
as # nodes and data size 
increase(heavy network 

communication) 

• Q5 exceeds 1 hour 
(touching a lot of data)  

• Q1,Q3,Q4,Q5 were 
challenging (complex queries) 

Figure taken from [4] 
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Result<CulumusRDF> 

• System is very slow for Q2,Q3 and Q20 due to 
join on string  

• Not scalable  

 
Figure taken from [4] 
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Result<Couchbase> 

• Encounters problem 
when loading 1 billion 
data to all cluster size 

• System is fast for 
queries on 100M 
triples 

• Q5 is slowest due to 
touching a lot of data 

• DBpedia is similar  

Figure taken from [4] 
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Conclusion 

• Query time in NoSQL systems are competitive 
against native RDF stores 
– Simple workloads  good performance 

– Complex workloads poor performance 

 Figure taken from [5] 
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Conclusion 

• Classical relational database query 
optimizations work well for RDF NoSQL 
systems 

 

• Using MapReduce operations imposes latency 
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Thank you 

• Q&A 
• Discussion 

– The experiments are focused on read operation while 
write and update are also important in real situations. 
Although a system like Cassandra has high write 
throughput, we use several index tables that needs to 
be updated for writes. Will studying write and update 
may affect the conclusion?  
 

– Most of mentioned systems, store RDF data in 
multiple tables. Will this be a problem for data 
consistency? 
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