
1

NoSQL Databases for RDF:
An Empirical Evaluation

P. Cudré-Mauroux, I. Enchev, S. Fundatureanu, P. Groth, A. Haque,
A. Harth, F. L. Keppmann, D. Miranker, J. F. Sequeda, M. Wylot

Presented by: Besat Kassaie

2

Outline

• Objectives

• Evaluated Systems

• Experiments and Results

• Conclusion

• Q&A

3

Objectives

• Comparing NoSQL systems with native triple
stores

• Finding performance similarities between
systems

• Providing an environment for replicable tests

– (paper’s website is not available anymore!)

• Not choosing a “winner” among systems

4

Outline

• Objectives

• Evaluated Systems

• Experiments and Results

• Conclusion

• Q&A

5

Evaluated Systems

Systems selected based on two factors:

– Current extensions on NoSQL for supporting RDF

– Covering different NoSQL system types

Storage System Type

CouchDB Document Based

Cassandra Key-Value/Column store

HBase Key-Value/Column store

4store (Baseline) Distributed RDF DBMS

6

4store Architecture

1- Parses queries
2- Handles distributed communication

Stores actual data

Figure taken from [1]

7

4store

• RDF data stored as quads:

– (model, subject, predicate, object)

• Encodes URIs, literals and blank nodes as
numbers

• Keeps data in property tables

• Divides data among non-overlapping
segments based on “subject”

segment = (subject code) mod segments

8

4store Indices

• P indices
– Two P indices per predicate :

• Based on Subject(s p ?)  Find Objects for given PS

• Based on Object (? p o) Find Subjects for given PO

• (? ? o) or (s ? ?)  Search all P indices

• R index
– Maps encoded hash value of P,O,S  String

• M index
– For a given model  List of all triples

9

HBase

• Column-oriented NoSQL

• Columns grouped into Column Families

• Data Sorted lexicographically by row-key

• Multi-dimensional: row, column, timestamp

• Relies on HDFS

• Integrated by Hadoop (MapReduce)

10

Jena+HBase

Schema : Leverages sorted row-keys in HBase

• Maps literals, URIs  8-byte ids

• RDF data is stored in three index tables

– SPO,POS and OSP

Row-Key ColName Empty

SPO1 Empty

SPO2 Empty

……. ……..

Row-Key ColName Empty

POS1 Empty

POS2 Empty

……. ……..

Row-Key ColName Empty

OSP1 Empty

OSP2 Empty

……. ……..

(s ? ?) , (s p ?) (? p o) , (? p ?) (? ? o) , (s ? o)

11

Jena+HBase

HBase(RDF Store)

SELECT ?x ?y ?z WHERE { ?z ub:subOrganizationOf ?y
. ?y rdf:type ub:University . ?z rdf:type
ub:Department . ?x ub:memberOf ?z . ?x rdf:type
ub:GraduateStudent . ?x
ub:undergraduateDegreeFrom ?y . }

Jena

BGP triple

Query Plan
 (Tree of iterators)

Q
u

e
ry

 C
o

n
ve

rs
io

n

Figure adopted from [2]

Optimization
pushing down

SPARQL filters on
numbers

12

Hive+HBase

Schema :

• Compressed subjects are row-keys

• TimeStamps used to store multi-valued
objects

Row-Key TimeStamp Predicate1 Predicate2

Compressed Subject1 1 Object1 Object11

2 Object4 Empty

3 Object7 Empty

……. ……… …….. ………

13

Hive+HBase

Unique Subjects are identified in query’s BGP by Jena
ARQ

For each Subject a temporary Hive Table is created
containing requested predicates and objects

Join conditions are identified to see which temp
tables need to be joined

Hive queries for joins are executed by MapReduce

Q
u

e
ry

 C
o

n
ve

rs
io

n

14

CumulusRDF

• RDF Store based on Cassandra+Sesame

• Cassandra indices:

– Hash index based on row-key

– Sorted index for column names(columns are sorted)

– Secondary index mapping values to row-key

15

CumulusRDF

Schema: leverages Cassandra indices

 Row-
Key

ColName
PO1

ColName
PO2

S1 Empty Empty

S2 Empty Empty

……. ……..

(s ? ?) , (s p ?)

Row-
Key

ColName
 SP1

ColName
 SP2

O1 Empty Empty

O2 Empty Empty

……. …….. ……..

(? ? o) , (s ? o)

Row-
Key

ColName
 S1

ColName
 S2

PO1 Empty Empty

PO2 Empty Empty

……. …….. ……..

Row-
Key

ColName
 P1

ColName
 P2

PO1 P1 Empty

PO2 Empty p2

……. …….. ……..

(? p o) (? p ?) (not used here)

16

CumulusRDF

Query

• “Sesame is a powerful Java framework for
processing and handling RDF data”[3]

• Sesame translates SPARQL queries to index
lookups on Cassandra indices

• Sesame processes joins and filters

17

Couchbase

• NoSQL document-oriented database

• Supports JSON documents

Schema

• RDF data is serialized to JSON Documents

• Subjects are document IDs

• Two JSON arrays for predicates and objects in
each document

18

Couchbase

Query

• Query execution is based on Jena SPARQL
engine (similar to HBase)

• Three Couchbase views are built to cover

 (? p ?), (? ? o), (? p o)

• For patterns including subject the entire JSON
document is retrieved and parsed

19

Outline

• Objectives

• Evaluated Systems

• Experiments and Results

• Conclusion

• Q&A

20

Experimental Setting

• Benchmarks:

– Berlin SPARQL Benchmark(BSBM)

• ~ 10 million triples (Scale Factor: 28,850)

• ~ 100 million triples(Scale Factor: 284,826)

• ~ 1 billion triples(Scale Factor: 2,878,260)

– DBpedia SPARQL Benchmark(DBPSB)

• 153,737,783 triples (Scale Factor: 100%)

21

Results <4store>

• Query time decreases
as #nodes increases

• Response time is sub-
second for 10-100M
triples

• 4store is slow for
queries touching a lot
of data (Q5)

• 4store times out for
loading 1 billion triples

Figure taken from [4]

22

Results <4store>

• 4store is not scalable for DBpedia benchmark

highly complex dataset  too much fragmentation
high network delays

Figure taken from [4]

23

Results <Jena+HBase>

• Sub-second query
time for highly
selective queries
(Q2,Q8,Q9,Q11,Q12)

• System is slow for
queries touching a lot
of data (Q5,Q7)

• System times out for
Q10 that has a filter
on date

Figure taken from [4]

24

Results <Jena+HBase>

• Sub-second query time almost for all queries

– Many duplicated rows are removed during loading

– Queries are simpler than BSBM

• Q17 is slower due to filter on string

• Not scalable for this dataset

25

Result<Hive+HBase>

• Query time
decreases as #nodes
increase

• MapReduce shuffle
stage increases
query time (minute)

• Q7 is slowest (needs
4 MapReduce jobs)

26

Result<Hive+HBase>

• Scalable

• Low query time due to simpler queries with
almost no join (comparing with BSBM)

Figure taken from [4]

27

Result<CulumusRDF>

• Performance decreases
as # nodes and data size
increase(heavy network

communication)

• Q5 exceeds 1 hour
(touching a lot of data)

• Q1,Q3,Q4,Q5 were
challenging (complex queries)

Figure taken from [4]

28

Result<CulumusRDF>

• System is very slow for Q2,Q3 and Q20 due to
join on string

• Not scalable

Figure taken from [4]

29

Result<Couchbase>

• Encounters problem
when loading 1 billion
data to all cluster size

• System is fast for
queries on 100M
triples

• Q5 is slowest due to
touching a lot of data

• DBpedia is similar

Figure taken from [4]

30

Outline

• Objectives

• Evaluated Systems

• Experiments and Results

• Conclusion

• Q&A

31

Conclusion

• Query time in NoSQL systems are competitive
against native RDF stores
– Simple workloads  good performance

– Complex workloads poor performance

 Figure taken from [5]

32

Conclusion

• Classical relational database query
optimizations work well for RDF NoSQL
systems

• Using MapReduce operations imposes latency

33

Thank you

• Q&A
• Discussion

– The experiments are focused on read operation while
write and update are also important in real situations.
Although a system like Cassandra has high write
throughput, we use several index tables that needs to
be updated for writes. Will studying write and update
may affect the conclusion?

– Most of mentioned systems, store RDF data in
multiple tables. Will this be a problem for data
consistency?

34

References

[1] S. Harris, N. Lamb, and N. Shadbolt, “4store: The design and implementation of a
clustered rdf store,” presented at the 5th International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS2009), 2009.

[2] P. Yuan, C. Xie, H. Jin, L. Liu, G. Yang, and X. Shi, “Dynamic and fast processing of
queries on large-scale RDF data,” Knowl Inf Syst, vol. 41, no. 2, pp. 311–334, Jan. 2014.

[3] http://rdf4j.org/

[4] The figures in result section are reproduced from the published data set, retrieved
from web.archive.com

[5] P. Cudré-Mauroux, I. Enchev, S. Fundatureanu, P. Groth, A. Haque, A. Harth, F. L.
Keppmann, D. Miranker, J. F. Sequeda, and M. Wylot, “NoSQL Databases for RDF: An
Empirical Evaluation,” in The Semantic Web – ISWC 2013, H. Alani, L. Kagal, A. Fokoue,
P. Groth, C. Biemann, J. X. Parreira, L. Aroyo, N. Noy, C. Welty, and K. Janowicz, Eds.
Springer Berlin Heidelberg, 2013, pp. 310–325.

http://rdf4j.org/
http://rdf4j.org/
http://rdf4j.org/
http://rdf4j.org/
http://rdf4j.org/
http://rdf4j.org/
http://rdf4j.org/
http://rdf4j.org/

