Data Intensive Computing in the Cloud

MAP/REDUCE

1

Map/Reduce

- Key-Value Data Store
- Programming model
- Examples
- Execution model
- Criticism

Overview

- New systems have emerged to address requirements of data management in the cloud
 - so-called "NoSQL" data stores
 - scalable SQL databases

Horizontal and Vertical Scaling

- shared nothing
- replicating and partitioning data over thousands of servers
- distribute "simple operation" workload over thousands of servers

Simple Operations

- key lookups
- read and writes of one or a small number of records
- no complex queries or joins

3

Defining "NoSQL"

- No agreed upon definition
 - "not only SQL"
 - "not relational"

- ..

· Six key features

- 1. ability to scale simple operation throughput over many servers
- 2. ability to replicate and distribute (partition) data over many servers
- 3. simple call level interface or protocol (in contrast to a SQL binding)
- 4. weaker concurrency model than ACID transactions of most relational (SQL) database systems
- 5. efficient use of distributed indexes and RAM for data storage
- 6. ability to dynamically add new attributes to data records

Based on: "Scalable SQL and NoSQL Data Stores" by R. Cattell, 2010

Key/Value Data Model

- Interface
 - put(key, value)
 - get(key): value

- · Data storage
 - values (data) are stored based on programmer-defined keys
 - system is agnostic as to the structure (semantics) of the value
- Queries are expressed in terms of keys
- Indexes are defined over keys
 - some systems support secondary indexes over (part of) the value

5

Motivation

- Background and Requirements
 - computations are conceptually straightforward
 - input data is (very) large
 - distribution over hundreds or thousands of nodes
- Programming model for processing of large data sets
 - abstraction to express simple computations
 - hide details of parallelization, data distribution, fault-tolerance, and load-balancing

Programming Model

- Inspired by primitives from functional programming languages such as Lisp, Scheme, and Haskell
- Input and output are sets of key/value pairs
- Programmer specifies two functions

```
\begin{array}{lll} - \text{ map } & (\mathtt{k_1}, \mathtt{v_1}) & \rightarrow \ \mathtt{list}(\mathtt{k_2}, \mathtt{v_2}) \\ - \text{ reduce } & (\mathtt{k_2}, \mathtt{list}(\mathtt{v_2})) & \rightarrow \ \mathtt{list}(\mathtt{v_2}) \end{array}
```

- Key and value domains
 - input keys and values are drawn from a different domain than intermediate and output keys and values
 - intermediate keys and values are drawn from the same domain as output keys and values

7

Map Function

- · User-defined function
 - processes input key/value pair
 - produces a set of *intermediate* key/value pairs
- Map function I/O
 - input: read from GFS file (chunk)
 - **output:** written to intermediate file on local disk
- Map/reduce library
 - executes map function
 - groups together all intermediate values with the same key
 - "passes" these values to reduce functions
- Effect of map function
 - processes and partitions input data
 - builds distributed map (transparent to user)
 - similar to "group by" operation in SQL

Reduce Function

- · User-defined function
 - accepts one intermediate key and a set of values for that key
 - merges these values together to form a (possibly) smaller set
 - typically, zero or one output value is generated per invocation
- Reduce function I/O
 - input: read from intermediate files using remote reads on local files of corresponding mapper nodes
 - output: each reducer writes its output as a file back to GFS
- Effect of reduce function
 - similar to aggregation operation in SQL

9

Map 1 Reduce 1 Reduce 2 Map 2 Reduce 3 Reduce 4

- Map functions create a user-defined "index" from source data
- Reduce functions compute grouped aggregates based on index
- Flexible framework
 - users can cast raw original data in any model that they need
 - wide range of tasks can be expressed in this simple framework

Example: Looking Up Friends on Social Networks

- Facebook has a list of friends (bidirectional relationship)
- This list can be seen when visiting a user's profile
- · How many friends do two people (users) have in common
- Can pre-compute results and store if list does not change often
- Person → [List of Friends]

 $A \rightarrow B C$ $B \rightarrow A C$

 $C \rightarrow A B$

Each line an argument to mapper

For every friend in the list of friends, mapper outputs (K,V) pair

11

Looking Up Friends on Social Networks (contd)

```
For map(A \rightarrow B C):
   (A,B) \rightarrow B C
   (A,C) \rightarrow B C
For map(B \rightarrow A C):
   (A,B) \rightarrow A C
   (B,C) \rightarrow A C
For map(C \rightarrow A B):
   (A,C) \rightarrow A B
   (B,C) \rightarrow A B
Group these by their keys to get:
   (A,B) \rightarrow (A C)(B C)
   (A,C) \rightarrow (A B)(B C)
   (B,C) \rightarrow (A B)(A C)
Reduce per line by intersect lists per key:
   (A,B) \rightarrow (C)
   (A,C) \rightarrow (B)
   (B,C) \rightarrow (A)
E.g. when C visits B's profile can look-up (B,C) for friends in common
```

Other Examples

- · Distributed "grep"
 - goal: find positions of a pattern in a set of files
 - map: (File, String) → list(Integer, String), emits a line#, line> pair for every line that matches the pattern
 - reduce: identity function that simply outputs intermediate values
- Count of URL access frequency
 - goal: analyze Web logs and count page requests
 - map: (URL, String) → list(URL, Integer), emits <URL, 1> for every occurrence of a URL
 - reduce: (URL, list(Integer)) → list(Integer), sums the occurrences of each URL
- Workload of first example is in map function, whereas it is on the reduce in the second example

Execution Overview

- 1. Map/reduce library splits input files into *M* pieces and then starts copies of the program on a cluster of machines
- 2. One copy is the master, the rest are workers; master assigns *M* map and *R* reduce tasks to idle workers
- 3. Map worker reads its input split, parses out key/value pairs and passes them to user-defined map function
- 4. Buffered pairs are written to local disk, partitioned into *R* regions; location of pairs passed back to master
- 5. Reduce worker is notified by master with pair locations; uses RPC to read intermediate data from local disk of map workers and sorts it by intermediate key to group tuples by key
- 6. Reduce worker iterates over sorted data and for each unique key, it invokes user-defined reduce function; result appended to reduce partition
- 7. Master wakes up user program after all map and reduce tasks have been completed

15

Master Data Structures

- Information about all map and reduce task
 - worker state: idle, in-progress, or completed
 - identity of the worker machine (for non-idle tasks)
- Intermediate file regions
 - propagates intermediate file locations from map to reduce tasks
 - stores locations and sizes of the R intermediate file regions produced by each map task
 - updates to this location and size information are received as map tasks are completed
 - information pushed incrementally to workers that have in-progress reduce tasks

Fault Tolerance

· Worker failure

- master pings workers periodically; assumes failure if no response
- completed/in-progress map and in-progress reduce tasks on failed worker are rescheduled on a different worker node
- dependency between map and reduce tasks

· Master failure

- checkpoints of master data structure
- can recover after failure of master but progress can halt

Failure semantics

- if user-defined functions are deterministic, execution with faults produces the same result as execution without faults
- rely on atomic commits of map and reduce tasks

17

Other Implementation Aspects

Locality

- network bandwidth is scarce resource
- move computation close to data
- master takes GFS metadata into consideration (location of replicas)

· Task granularity

- master makes O(M + R) scheduling decisions
- master stores O(M * R) states in memory
- M is typically larger than R

Backup Tasks

- "stragglers" are a common cause for suboptimal performance
- as a map/reduce computation comes close to completion, master assigns the same task to multiple workers

Map/Reduce Criticism

- "Why not use a parallel DBMS instead?"
 - map/reduce is a "giant step backwards"
 - no schema, no indexes, no high-level language
 - not novel at all
 - does not provide features of traditional DBMS
 - incompatible with DBMS tools
- Performance comparison of approaches to large-scale data analysis
 - Pavlo et al. "A Comparison of Approaches to Large-Scale Data Analysis",
 Proc. Intl. Conf. on Management of Data (SIGMOD), 2009
 - parallel DBMS (Vertica and DBMS-X) vs. map/reduce (Hadoop)
 - original map/reduce task: "grep" from Google paper
 - typical database tasks: selection, aggregation, join, UDF
 - 100-node cluster

19

References

- J. Dean and S. Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. Proc. Symp. on Opearting Systems Design & Implementation (OSDI), pp. 137-149, 2004.
- A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stonebraker: A Comparison of Approaches to Large-Scale Data Analysis. Proc. Intl. Conf. on Management of Data (SIGMOD), pp. 165-178, 2009.
- S. Krenzel: MapReduce: Finding Friends, 2010.
- Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst: **HaLoop:** Efficient Iterative Data Processing on Large Clusters. *Proc. Intl. Conf. on Very Large Data Bases (VLDB), pp. 285-296, 2010.*

