
CS755! 5-1!

Module 5���
Accessing Remote Resources���

CS755! 5-2!

Two Issues���

• Remote service invocation!
➡  How do we request services from remote objects!

• Distributed naming!
➡  How do we assign and know the names of remote objects!

CS755! 5-3!

Remote Service Invocation���

CS755! 5-4!

Programming Models for
Distributed Applications���

• Remote Procedure Call (RPC)!
➡  Extension of the conventional procedure call model!
➡  Allows client programs to call procedures in server programs !

• Remote Method Invocation (RMI)!
➡  Object-oriented!
➡  Extension of local method invocation!
➡  Allows an object in one process to invoke the methods of an object in

another process!
• Message-Based Communication!

➡  Allows sender and receiver to communicate without blocking and
without the receiver having to be running!

CS755! 5-5!

Essentials of Interprocess
Communication���

• Ability to communicate - exchange messages!
➡  This is the responsibility of the networks and the request-reply protocol!

• Ability to “talk” meaningfully!
➡  Interfaces!
➡  Processes have to be able to understand what each other is sending!

✦  Agreed standards for data representation!

CS755! 5-6!

Interface���
• Defines what each module can do in a distributed system!
• Service interface (in RPC model)!

➡  specification of procedures offered by a server!
• Remote interface (in RMI model)!

➡  specification of methods of an object that can be invoked by objects in
other processes!

• Example: CORBA IDL
//In file Person.idl
Struct Person {
 string name;
 string place;
 long year;

};
Inerface PersonList {
 readonly attribute string listname;
 void addPerson(in Person p);
 void getPerson(in string name, out Person p);
 long number();

};

CS755! 5-7!

Remote Procedure Call (RPC)���
• Extension of the familiar procedure call semantics to distributed

systems (with a few twists)!
• Allows programs to call procedures on other machines!
• Process on machine A calls a procedure on machine B:!

➡  The calling process on A is suspended; and execution of the called
procedure takes place on B;!

➡  Information can be transported from the caller to the callee in the
parameters; and information can come back in the procedure result!

➡  No message passing or I/O at all is visible to the programmer!
• Subtle problems:!

➡  Calling and called procedures execute in different address spaces!
➡  Parameters and results have to be passed, sometimes between different

machines!
➡  Both machines can crash!

CS755! 5-8!

Local !
variables !
for main!

SP!

Local !
variables !
for main!

SP!

Local !
variables !
for main!

SP!nbytes!
buf!
fd!

Return address!
Read’s local!

variables!
0! 0! 0!

Before call to read! While read is active! After return to main!

The read routine is extracted from library by linker and inserted into the object program. It puts
the parameters in registers and issues a READ system call by trapping to the kernel.

Local Procedure Call���
• Consider a C program with the following call in the main program !
! !count = read(fd, buf, nbytes)!
!where fd (file descriptor) and nbytes (no. bytes to read) are integers, and buf
(buffer into which data are read) is an array of characters !

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms
© Prentice-Hall, Inc. 2002

CS755! 5-9!

RPC Operation���
• Objective: Make interprocess communication among remote processes

similar to local ones (i.e., make distribution of processes transparent)!
• RPC achieves its transparency in a way analogous to the read operation in

a traditional single processor system!
➡  When read is a remote procedure (that will run on the file server’s machine), a

different version of read, called client stub, is put into the library!
➡  Like the original read, client stub is called using the calling sequence

described in previous slide!
➡  Also, like the original read, client stub traps to the kernel!
➡  Only unlike the original read, it does not put the parameters in registers and

ask the kernel to give it data!
➡  Instead, it packs the parameters into a message and asks the kernel to send the

message to the server!
➡  Following the call to send, client stub calls receive, blocking itself until the

reply comes back!
➡  When reply returns, extract results and return to caller.!

CS755! 5-10!

RPC Operation (2)���
Client!
procedure!

Client!
stub!

Comm.!
(OS)!

Transmit!

Receive!

Client!
Server!
procedure!

Server!
stub!

Comm.!
(OS)!

Marshall!
results!

Transmit!

Unmarshall!
arguments!

Receive!

Server!

Call!

Return!

(3) Call !
packet(s)!

(8) Result !
packet(s)!

Call(…)! Marshall!
params!

Unmarshall!
results!

.!.!.!

(1)! (2)! (4)! (5)!

(6)!(7)!(9)!(10)!

1.  Client procedure calls the stub as
local call!

2.  Client stub builds the message and
calls the local OS!

3.  Client OS sends msg to server OS!
4.  Server OS hands over the message to

server stub!
5.  Server stubs unpacks parameters

and calls server procedure!

6.  Server procedure does its work
and returns results to server stub

7.  Server stub packs results in a
message and calls its local OS

8.  Server OS sends msg to client OS
9.  Client OS hands over the

message to client stub
10. Client stubs unpacks result and

returns from procedure call

CS755! 5-11!

Parameter Passing���
• Parameter passing by value!

➡  Compose messages that consist of structures for values!
➡  Problem: Multiple machine types in a distributed system. Each often has its own

representation for data! èAgree on data representation!

• Parameter passing by reference!
➡  Difficult!
➡  Use copy/restore!

Kernel! Kernel!

.

.
n=sum(4,7);

.

.

Stubs!
Client machine! Server machine!

Message!
sum!

4!
7!

sum!
4!
7!

sum(i,j)
int i,j;
{
return(i+j);
}

Parameter passing by value!

CS755! 5-12!

RPC in Presence of Failures���

• Five different classes of failures can occur in RPC systems!
➡  The client is unable to locate the server!
➡  The request message from the client to the server is lost!
➡  The reply message from the server to the client is lost!
➡  The server crashes after receiving a request!
➡  The client crashes after sending a request!

CS755! 5-13!

Client Cannot Locate the Server���

• Examples:!
➡  Server might be down!
➡  Server evolves (new version of the interface installed and new stubs

generated) while the client is compiled with an older version of the client stub!
• Possible solutions:!

➡  Use a special code, such as “-1”, as the return value of the procedure to
indicate failure. In Unix, add a new error type and assign the corresponding
value to the global variable errno.!
✦  “-1” can be a legal value to be returned, e.g., sum(7, -8)!

➡  Have the error raise an exception (like in ADA) or a signal (like in C). !
✦  Not every language has exceptions/signals (e.g., Pascal). Writing an exception/

signal handler destroys the transparency!

CS755! 5-14!

Lost Request Message���

• Kernel starts a timer when sending the message:!
➡  If timer expires before reply or ACK comes back: Kernel retransmits !
➡  If message truly lost: Server will not differentiate between original and

retransmission è everything will work fine!
➡  If many requests are lost: Kernel gives up and falsely concludes that the

server is down è we are back to “Cannot locate server”!

CS755! 5-15!

Lost Reply Message���

• Kernel starts a timer when sending the message:!
➡  If timer expires before reply comes back: Retransmits the request!

✦  Problem: Not sure why no reply (reply/request lost or server slow) ?!

➡  If server is just slow: The procedure will be executed several times!
✦  Problem: What if the request is not idempotent, e.g. money transfer!

➡  Way out: Client’s kernel assigns sequence numbers to requests to allow
server’s kernel to differentiate retransmissions from original!

CS755! 5-16!

Server!
Receive!
Execute!
Reply!

REQ!

REP!
(a)!

Server!
Receive!
Execute!
Crash!

REQ!

No!
REP!

(b)!

Server!
Receive!
Crash!

REQ!

No!
REP!

(c)!

Server crashes���

• Problem: Clients’ kernel cannot differentiate between (b) and (c)!
(Note: Crash can occur before Receive, but this is the same as (c).)!

• 3 schools of thought exist on what to do here:!
➡  Wait until the server reboots and try the operation again. Guarantees that

RPC has been executed at least one time (at least once semantics)!
➡  Give up immediately and report back failure. Guarantees that RPC has been

carried out at most one time (at most once semantics)!
➡  Client gets no help. Guarantees nothing (RPC may have been carried out

anywhere from 0 to a large number). Easy to implement.!

CS755! 5-17!

Client Crashes���

• Client sends a request and crashes before the server replies: A computation
is active and no parent is waiting for result (orphan)!
➡  Orphans waste CPU cycles and can lock files or tie up valuable resources!
➡  Orphans can cause confusion (client reboots and does RPC again, but the

reply from the orphan comes back immediately afterwards)!
• Possible solutions!

➡  Extermination: Before a client stub sends an RPC, it makes a log entry (in safe
storage) telling what it is about to do. After a reboot, the log is checked and
the orphan explicitly killed off. !
✦  Expense of writing a disk record for every RPC; orphans may do RPCs, thus

creating grand orphans impossible to locate; impossibility to kill orphans if the
network is partitioned due to failure. !

CS755! 5-18!

Client Crashes (2)���
• Possible solutions (cont’d)!

➡  Reincarnation: Divide time up into sequentially numbered epochs. When
a client reboots, it broadcasts a message declaring the start of a new
epoch. When broadcast comes, all remote computations are killed. Solve
problem without the need to write disk records!
✦  If network is partitioned, some orphans may survive. But, when they report

back, they are easily detected given their obsolete epoch number!

➡  Gentle reincarnation: A variant of previous one, but less Draconian!
✦  When an epoch broadcast comes in, each machine that has remote computations

tries to locate their owner. A computation is killed only if the owner cannot be
found!

➡  Expiration: Each RPC is given a standard amount of time, T, to do the job.
If it cannot finish, it must explicitly ask for another quantum.!
✦  Choosing a reasonable value of T in the face of RPCs with wildly differing

requirements is difficult!

CS755! 5-19!

Asynchronous RPC���

Traditional (synchronous) RPC!
interaction!

Asynchronous RPC!
interaction!

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-20!

Asynchronous RPC (2)���

A client and server interacting through two asynchronous RPCs

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-21!

Where do stub procedures come
from?���

• In many systems, stub procedures are generated automatically by a special stub
compiler!

• Given a specification of the server procedure and the encoding rules, the message
format is uniquely determined!

• It is, thus, possible to have a compiler read the server specification and generate a
client stub that packs its parameters into the officially approved message format!

• Similarly, the compiler can also produce a server stub that unpacks the parameters
and calls the server!
!Having both stub procedures generated from a single formal spec. of the server not
only make life easier for the programmers, but reduces the chance of error and makes
the system transparent with respect to differences in internal representation of data.!

Client!
procedure!

Client!
stub!

Comm.!
(OS)!

Transmit!

Receive!

Client!
Server!
procedure!

Server!
stub!

Comm.!
(OS)!

Marshall!
results!

Transmit!

Unmarshall!
arguments!

Receive!

Server!

Call!

Return!

(3) Call !
packet(s)!

(8) Result !
packet(s)!

Call(…)! Marshall!
params!

Unmarshall!
results!

.!.!.!

(1)! (2)! (4)! (5)!

(6)!(7)!(9)!(10)!

CS755! 5-22!

Writing Clients/Servers ���
(using DCE RPC)���

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-23!

How does the client locate the
server?���

Register! Name, version, handle, unique id!
Deregister! Name, version, unique id!

Call! Input! Output!

Binder!
interface!

• Hardwire the server address into the client!
➡  Fast but inflexible!!

• A better method is dynamic binding:!
➡  When the server begins executing, the call to initialize outside the main

loop exports the server interface!

➡  This means that the server sends a message to a program called a binder,
to make its existence known. This process is referred to as registering!

➡  To register, the server gives the binder its name, its version number, a
unique identifier (32-bits), and a handle used to locate it!

➡  The handle is system dependent (e.g., Ethernet address, IP address, an X.
500 address, …)!

CS755! 5-24!

Look up! Name, version! Handle, unique id!
Call! Input! Output!

Binder!
interface!

Dynamic Binding���
• When the client calls one of the remote procedures for the first time,

say, read:!
➡  The client stub sees that it is not yet bound to a server, so it sends a

message to the binder asking to import version x of server interface!
➡  The binder checks to see if one or more servers have already exported an

interface with this name and version number.!
✦  If no currently running server is willing to support this interface, the read

call fails!
✦  If a suitable server exists, the binder gives its handle and unique identifier to

the client stub!

➡  Client stub uses the handle as the address to send the request message to.
The message contains the parameters and a unique identifier, which the
server’s kernel uses to direct incoming message to the correct server!

CS755! 5-25!

Dynamic Binding (2)���

• Advantages!
➡  Flexibility!
➡  Can support multiple servers that support the same interface, e.g.:!

✦  Binder can spread the clients randomly over the servers to even load!
✦  Binder can poll the servers periodically, automatically deregistering the servers

that fail to respond, to achieve a degree of fault tolerance!
✦  Binder can assist in authentication: For example, a server specifies a list of users

that can use it; the binder will refuse to tell users not on the list about the server!
➡  The binder can verify that both client and server are using the same version of

the interface!
• Disadvantages!

➡  The extra overhead of exporting/importing interfaces costs time!
➡  The binder may become a bottleneck in a large distributed system!

CS755! 5-26!

Message-Based Communication���

• Lower-level interface to provide more flexibility!
• Two (abstract) primitives are used to implement these!

➡  ! send!
➡  ! receive!

• Issues:!
➡  Are primitives blocking or nonblocking (synchronous or asynchronous)?!
➡  Are primitives reliable or unreliable (persistent or transient)?!

CS755! 5-27!

Synchronous/Asynchronous
Messaging���

• Synchronous !
➡  The sender is blocked until its message is stored in the local buffer at the

receiving host or delivered to the receiver.!
• Asynchronous !

➡  The sender continues immediately after executing a send!
➡  The message is stored in the local buffer at the sending host or at the first

communication server.!

CS755! 5-28!

Transient/Persistent Messaging���

• Transient !
➡  The sender puts the message on the net and if it cannot be delivered to the

sender or to the next communication host, it is lost.!
➡  There can be different types depending on whether it is asynchronous or

synchronous!
• Persistent!

➡  The message is stored in the communication system as long as it takes to
deliver the message to the receiver!

CS755! 5-29!

Socket Primitives for TCP/IP���

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-30!

Connection-Oriented
Communication Using Sockets���

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-31!

Persistent Messaging���

• Usually called message-queuing system, since it involves queues at both
ends!
➡  Sender application has a queue!
➡  Receiver application has a queue!
➡  Receiver does not have to be active when sender puts a message into sender

queue!
➡  Sender does not have to be active when receiver picks up a message from its

queue!
• Basic interface:!

CS755! 5-32!

Different Message Queuing
Models���

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-33!

General Architecture of a
Message-Queuing System (1)���

• The relationship between queue-level addressing and network-level addressing.!

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-34!

General Architecture of a
Message-Queuing System (2)���

• The general organization of a message-queuing system with routers.!

2-29

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-35!

Message Brokers���

• The general organization of a message broker in a message-queuing
system.! 2-30

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-36!

Distributed Naming���

CS755! 5-37!

Names, Addresses, etc.���
• Names !

➡  Identification of objects!
✦  Resource sharing: Internet domain names!
✦  Communication: domain name part of email address !

➡  How much information about an object is in a name?!
✦  Pure names: uninterpreted bit patterns!
✦  Non-pure names: contain information about the object, e. g., its location!

•  Name Services !
➡  Entries of the form <name, attributes>, where attributes are typically network

addresses !
➡  Type of lookup queries!

✦  name è attribute values!
✦  also called name resolution!

•  Directory Services !
➡  <name, attributes> entries !
➡  Types of lookup queries!

✦  name è attribute values!
✦  attribute values ènames!

CS755! 5-38!

Composed Naming Domains���

http://www.cdk3.net:8888/WebExamples/earth.html
URL

Resource ID (IP number, port number, pathname)

Network address

2:60:8c:2:b0:5a file

Web server

55.55.55.55 WebExamples/earth.html 8888

DNS lookup

Socket

From Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed.
© Addison-Wesley Publishers 2000

CS755! 5-39!

Requirements on Name Services���

• Usage of a convention for unique global naming!
➡  Enables sharing!
➡  It is often not easily predictable which services will eventually share resources !

• Scalability!
➡  Naming directories tend to grow very fast, in particular in Internet !

• Consistency!
➡  Short and mid-term inconsistencies tolerable!
➡  In the long term, system should converge towards a consistent state !

• Performance and availability!
➡  Speed and availability of lookup operations!
➡  Name services are at the heart of many distributed applications !

• Adaptability to change!
➡  Organizations frequently change structure during lifetime !

• Fault isolation!
➡  System should tolerate failure of some of its servers!

CS755! 5-40!

Name Spaces���

• Set of all valid names to be used in a certain context, e. g., all valid URLs in
WWW !

• Can be described using a generative grammar (e. g., BNF for URLs)!
• Internal structure!

➡  Flat set of numeric or symbolic identifiers!
➡  Hierarchy representing position (e. g., UNIX file system)!
➡  Hierarchy representing organizational structure (e. g., Internet domains)!

• Potentially infinite!
➡  Holds only for hierarchic name spaces!
➡  Flat name spaces finite size induced by max. name length !

• Aliases!
➡  In general, allows a convenient name to be substituted for a more complicated

one !
• Naming domain!

➡  Name space for which there exist a single administrative authority for assigning
names within it!

CS755! 5-41!

Naming Graph with Single Root���

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-42!

Name Space Distribution (1)���

An example partitioning of the DNS name space, including
Internet-accessible files, into three layers.!

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-43!

Name Space Distribution (2)���

A comparison between name servers for implementing nodes from a large-scale
name space partitioned into a global layer, as an administrational layer, and a
managerial layer.!

Item Global Administrational Managerial

Geographical scale of network Worldwide Organization Department

Total number of nodes Few Many Vast numbers

Responsiveness to lookups Seconds Milliseconds Immediate

Update propagation Lazy Immediate Immediate

Number of replicas Many None or few None

Is client-side caching applied? Yes Yes Sometimes

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-44!

Issues in Name & Directory
Services���

• Partitioning !
➡  No one name server can hold all name and attribute entries for entire

network, in particular in Internet !
➡  Name server data partitioned according to domain!

• Replication !
➡  A domain has usually more than one name server !
➡  Availability and performance are enhanced!

•  Caching !
➡  Servers may cache name resolutions performed on other servers!

✦  Avoids repeatedly contacting the same name server to look up identical names !
➡  Client lookup software may equally cache results of previous requests!

CS755! 5-45!

Name Resolution���

• Translation of a name into the related primitive attribute !
• Often, an iterative process!

➡  Name service returns attributes if the resolution can be performed in it’s
naming context!

➡  Name service refers query to another context if name can’t be resolved in own
context !

• Deal with cyclic alias references, if present!
➡  Abort resolution after a predefined number of attempts, if no result obtained!

CS755! 5-46!

Iterative Navigation Example���

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-47!

1!
2!

3!4!
client!

NS2!

NS1!

NS3!

Navigation (2)���
• Non-recursive, server-controlled!

➡  Server contacts peers if it cannot
resolve name itself !
✦  by multicast or iteratively by

direct contact!

• Recursive, server-controlled!
➡  If name cannot be resolved,

server contacts superior server
responsible for a larger prefix of
the name space!
✦  recursively applied until name

resolved!
✦  can be used when clients and low-

level servers are not entitled to
directly contact high-level servers!

1!
2!

3!
5!

4!
client!

NS2!

NS1!

NS3!

From Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed.
© Addison-Wesley Publishers 2000

CS755! 5-48!

Recursive Navigation Example���

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2002

CS755! 5-49!

Recursive Name Resolution���

• Recursive name resolution of <nl, vu, cs, ftp>. Name servers cache
intermediate results for subsequent lookups.!

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-50!

Communication Cost Comparison of
Iterative vs Recursive���

From Tanenbaum and van Steen, Distributed Systems: Principles and Paradigms, 2nd edition
© Prentice-Hall, Inc. 2007

CS755! 5-51!

Name & Directory Services���

• Domain Name System (DNS)!
➡  Name service used across the Internet !

• X. 500!
➡  ITU - standardized directory service !

• LDAP!
➡  Directory service!
➡  Lightweight implementation of X.500!
➡  Often used in intranets!

• Jini!
➡  Discovery service used in spontaneous networking!
➡  Contains directory service component !

CS755! 5-52!

Domain Name System (DNS)���

• Performs name-to-IP mapping!
• Distributed database !

➡  implemented in hierarchy of many name servers!
• Application-layer protocol !

➡  host, routers, name servers to communicate to resolve names (address/name
translation)!

• Why not centralize DNS?!
➡  single point of failure!
➡  traffic volume!
➡  distant centralized database!
➡  maintenance!
 doesn’t scale!!

CS755! 5-53!

DNS Types���

• No server has all name-to-IP address mappings!
• Local name servers!

➡  Each ISP, company has local (default) name server!
➡  Host DNS query first goes to local name server!

• Authoritative name server!
➡  For a host: stores that host’s IP address, name!
➡  Can perform name-to-address translation for that host’s name!

• Root name server!
➡  Establishes a rooted tree of DNSs !

CS755! 5-54!

DNS: Root Name Servers���
• Contacted by local name server

that can not resolve name!
• Root name server:!

➡  contacts authoritative name
server if name mapping not
known!

➡  gets mapping!
➡  returns mapping to local name

server!
• Approximately dozen root name

servers worldwide!

CS755! 5-55!

Simple DNS Example���
Host db.utoronto.ca wants IP

address of
akcay.math.uwaterloo.ca!

1. Contacts its local DNS server,
dns.utoronto.ca!

2. dns.utoronto.ca contacts root
name server, if necessary!

3. root name server contacts
authoritative name server,
dns.uwaterloo.ca, if necessary !

requesting host
db.utoronto.ca

akcay.math.uwaterloo.ca

root name
server

authorititive name server
dns.uwaterloo.ca

local name server
dns.utoronto.ca

1

2
3

4
5

6

CS755! 5-56!

DNS Example���
Root name server:!
• may not know authoritative

name server!
• may know intermediate name

server: who to contact to find
authoritative name server!

requesting host
db.utoronto.ca

akcay.math.uwaterloo.ca

root name
server

local name server
dns.utoronto.ca

1

2
3

4 5

6

authoritative name server
dns.math.uwaterloo.ca

intermediate name server
dns.uwaterloo.ca

7

8

CS755! 5-57!

DNS: iterated queries���
Recursive query:!
• Puts burden of name

resolution on contacted
name server!

• Heavy load?!

Iterated query:!
• Contacted server replies

with name of server to
contact!

• “I don’t know this name,
but ask this server”!

requesting host
db.utoronto.ca

akcay.math.uwaterloo.ca

root name
server

local name server
dns.utoronto.ca

1

2
3

4

5 6

authoritative name server
dns.math.uwaterloo.ca

intermediate name server
dns.uwaterloo.ca

7

8

iterated
query

CS755! 5-58!

DNS Records���
• DNS holds resource records (RR)!

➡  RR format: (name, value, type,ttl)!
• Example records:!

➡  Type=A!
✦  name is hostname!
✦  value is IP address!

➡  Type=NS!
✦  name is domain (e.g. foo.com)!
✦  value is IP address of authoritative name server for this domain!

➡  Type=CNAME!
✦  name is an alias name for some “canonical” (the real) name!
✦  value is canonical name!

➡  Type=MX!
✦  value is hostname of mail server associated with name!

CS755! 5-59!

DNS Record Types���

Record type Meaning Main contents
A A computer address IP number
NS An authoritative name server Domain name for server
CNAME The canonical name for an alias Domain name for alias
SOA Marks the start of data for a zone Parameters governing the zone
WKS A well-known service description List of service names and protocols
PTR Domain name pointer (reverse

lookups)
Domain name

HINFO Host information Machine architecture and operating
system

MX Mail exchange List of < preference, host > pairs
TXT Text string Arbitrary text

From Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed.
© Addison-Wesley Publishers 2000

CS755! 5-60!

DNS Protocol & Messages���

Name, type fields!
 for a query

RRs in response!
to query

records for!
authoritative servers

additional “helpful”!
info that may be used

query or reply!
recursion desired !
recursion available!
reply is authoritative

16 bit # for query, !
reply to query !
uses same #!

CS755! 5-61!

Discovery Services���

• Directory services that allow clients to query available services in a
spontaneous networking environment!
➡  e. g., which are the available color printers!
➡  services enter their data using registration interfaces !
➡  structure usually rather flat, since scope limited to (wireless) LAN!

• JINI (http://www.sun.com/jini/)!
➡  JAVA-based discovery service!

✦  clients and servers run JVMs !
✓  communication via Java RMI !

✓  dynamic loading of code !

CS755! 5-62!

JINI Discovery Related Services���

• Lookup service!
➡  Holds information regarding available services!

• Query of lookup service by Jini client!
➡  Match request!
➡  Download object providing service from lookup service !

• Registration of a Jini client or Jini service with lookup service!
➡  Send message to well-known IP multicast address, identical to all Jini

instances!
➡  Limit multicast to LAN using time-to-live attribute!
➡  Use of leases that need to be renewed periodically for registering Jini services!

CS755! 5-63!

JINI Discovery Scenario���

Printing !
service!

 !service!
Lookup!

 !service!
Lookup!

Printing !
service!

admin!

admin!

admin, finance!

finance!

Client!

Client!

Corporate !
infoservice!

1. ‘finance’ !
 lookup service?!

2. Here I am:!

3. Request! !
printing!

4. Use printing!
 service!

Network!

From Coulouris, Dollimore and Kindberg, Distributed Systems: Concepts and Design, 3rd ed.
© Addison-Wesley Publishers 2000

• new client wishes to print on a printer belonging to the finance group!
!

