Cloud Computing and Data Management in the Cloud

INTRODUCTION

1

Outline

- Motivation
 - what is cloud computing?
 - what is cloud data management?
- Challenges, opportunities and limitations
 - what makes data management in the cloud difficult?
- New solutions
 - key/value, document, column family, graph, array, and object databases
 - scalable SQL databases
- Application
 - graph data and algorithms
 - usage scenarios

Cloud Computing

- · Different definitions for "Cloud Computing" exist
 - http://tech.slashdot.org/article.pl?sid=08/07/17/2117221
- Common ground of many definitions
 - processing power, storage and software are commodities that are readily available from large infrastructure
 - service-based view: "everything as a service (*aaS)", where only
 "Software as a Service (SaaS)" has a precise and agreed-upon definition
 - utility computing: pay-as-you-go model

3

How much data? (from Jimmy Lin, U. Md)

- Google processes 20 PB a day (2008)
- Wayback Machine has 3 PB + 100 TB/month (3/2009)
- Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
- eBay has 6.5 PB of user data + 50 TB/day (5/2009)
- CERN's LHC will generate 15 PB a year (??)

Cloud Computing Enterprises

Service-Based View on Computing

Source: Wikipedia (http://www.wikipedia.org)

7

Terminology

- Term cloud computing usually refers to both
 - SaaS: applications delivered over the Internet as services
 - The Cloud: data center hardware and systems software
- Public clouds
 - available in a pay-as-you-go manner to the public
 - service being sold is utility computing
 - Amazon Web Service, Microsoft Azure, Google AppEngine
- · Private clouds
 - internal data centers of businesses or organizations
 - normally not included under cloud computing

Based on: "Above the Clouds: A Berkeley View of Cloud Computing", RAD Lab, UC Berkeley

Utility Computing

- Illusion of infinite computing resources
 - available on demand
 - no need for users to plan ahead for provisioning
- No up-front cost or commitment by users
 - companies can start small
 - increase resources only when there is an increase in need
- · Pay for use on short-term basis as needed
 - processors by the hour and storage by the day
 - release them as needed, reward conservation

Based on: "Above the Clouds: A Berkeley View of Cloud Computing", RAD Lab, UC Berkeley

9

Virtualization

- Virtual resources abstract from physical resources
 - hardware platform, software, memory, storage, network
 - fine-granular, lightweight, flexible and dynamic
- · Relevance to cloud computing
 - centralize and ease administrative tasks
 - improve scalability and work loads
 - increase stability and fault-tolerance
 - provide standardized, homogenous computing platform through hardware virtualization, i.e. virtual machines

Spectrum of Virtualization · Computation virtualization - Instruction set VM (Amazon EC2, 3Tera) Byte-code VM (Microsoft Azure) Framework VM (Google AppEngine, Force.com)

- Storage virtualization
- Network virtualization

• Risk of over-provisioning: underutilization Static data center Capacity Demand

Unused resources

Slide Credit: RAD Lab, UC Berkeley

Economics of Cloud Providers

Resource	Cost in Medium Data Center	Cost in Very Large Data Center	Ratio
Network	\$95/Mbps/month	\$13/Mbps/month	7.1x
Storage	\$2.20/GB/month	\$0.40/GB/month	5.7x
Administration	≈140 servers/admin	>1000 servers/admin	7.1x

Source: James Hamilton (http://perspectives.mvdirona.com)

- Cloud computing is 5-7x cheaper than traditional in-house computing
- Added benefits
 - utilize off-peak capacity (Amazon)
 - sell .NET tools (Microsoft)
 - reuse existing infrastructure (Google)

Slide Credit: RAD Lab, UC Berkeley

15

Data Management in the Cloud

- Data management applications are potential candidates for deployment in the cloud
 - industry: enterprise database systems have significant up-front cost that includes both hardware and software costs
 - academia: manage, process and share mass-produced data in the cloud
- Many "Cloud Killer Apps" are in fact data-intensive
 - Batch Processing as with map/reduce
 - Online Transaction Processing (OLTP) as in automated business applications
 - Offline Analytical Processing (OLAP) as in data mining or machine learning

Scientific Data Management Applications

- · Old model
 - "Query the world"
 - data acquisition coupled to a specific hypothesis
- New model
 - "Download the world"
 - data acquired en masse, in support of many hypotheses
- E-science examples
 - astronomy: high-resolution, high-frequency sky surveys, ...
 - oceanography: high-resolution models, cheap sensors, satellites, ...
 - biology: lab automation, high-throughput sequencing, ...

Slide Credit: Bill Howe, U Washinaton

17

Scaling Data Management Systems

- Flavors of scalability
 - lots of (small) transactions
 - lots of copies of the data
 - lots of processor running on a single query (compute intensive tasks)
 - extremely large data set for one query (data intensive tasks)
- Data replication
 - move data to where it is needed
 - managed replication for availability and reliability

Revisit Cloud Characteristics

- Compute power is elastic, but only if workload is parallelizable
 - transactional data management systems do not typically use a sharednothing architecture
 - shared-nothing is a good match for analytical data management
- Scalability
 - in the past: out-of-core, works even if data does not fit in main memory
 - in the present: exploits thousands of (cheap) nodes in parallel

Based on: "Data Management in the Cloud: Limitations and Opportunities", IEEE, 2009.

Revisit Cloud Characteristics

- · Data is stored at an untrusted host
 - there are risks with respect to privacy and security in storing transactional data on an untrusted host
 - particularly sensitive data can be left out of analysis or anonymized
 - sharing and enabling access is often precisely the goal of using the cloud for scientific data sets

Based on: "Data Management in the Cloud: Limitations and Opportunities", IEEE, 2009.

21

Revisit Cloud Characteristics

- Data is replicated, often across large geographic distances
 - it is hard to maintain ACID guarantees in the presence of large-scale replication
 - full ACID guarantees are typically not required in analytical applications
- Virtualizing large data collections is challenging
 - data loading takes more time than starting a VM
 - storage cost vs. bandwidth cost
 - online vs. offline replication

22

Based on: "Data Management in the Cloud: Limitations and Opportunities", IEEE, 2009.

Challenges

- Scalability
 - today's SQL databases cannot scale to the thousands of nodes deployed in the cloud context
 - hard to support multiple, distributed updaters to the same data set
 - hard to replicate huge data sets for availability, due to capacity (storage, network bandwidth, ...)
 - storage: different transactional implementation techniques, different storage semantics, or both
 - query processing and optimization: limitations on either the plan space or the search will be required
 - programmability: express programs in the cloud

Based on: "The Claremont Report on Database Research", 2008

23

Challenges

- Data privacy and security
 - protect from other users and cloud providers
 - specifically target usage scenarios in the cloud with practical incentives for providers and customers
- New applications: "mash up" interesting data sets
 - expect services pre-loaded with large data sets, stock prices, web crawls, scientific data
 - data sets from private or public domain
 - might give rise to federated cloud architectures

24

Based on: "The Claremont Report on Database Research", 2008