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+
Introduction 

n Reliability on distributed systems 

n Failed components 

n Conflicting information 

n Abstractly defined as Byzantine Generals Problem 



+
The Byzantine Generals Problem 
(1/2) 

n Several divisions camping outside enemy city 

n Each division has a general 

n Communicate only by messenger 

n Traitors! 



+
The Byzantine Generals Problem 
(2/2) 

n A commanding general must send an order to his 
n-1 lieutenant generals such that: 
n  IC1. All loyal lieutenants obey the same order. 

n  IC2. If the commanding general is loyal, then every loyal 
lieutenant obeys the order he sends. 

n Solution: (3m + 1) generals for m traitors 



+
A solution: Oral Messages (1/2) 

A1.  Every message that is sent is delivered correctly. 

A2.  The receiver of a message knows who sent it. 

A3.  The absence of a message can be detected. 



+
A solution: Oral Messages (2/2) 

Algorithm OM(0) 

(1)  The commander sends his value to every lieutenant. 

(2)  Each lieutenant uses the value he receives from the commander, or 
uses the value RETREAT if he receives no value. 

Algorithm OM(m), m > 0 

(1)  The commander sends his value to every lieutenant. 

(2)  For each i, vi be the value Lieutenant i receives from the commander, 
or else RETREATE if he receives no value. Lieutenant i acts as the 
commander in Algorithm OM(m-1) to send the value vi to each of the 
n-2 other lieutenants. 

(3)  For each i, and each j <> i, let vj be the value Lieutenant i received 
from Lieutenant j in step (2) (using Algorithm OM(m-1)), or else 
RETREAT if he received no such value. Lieutenant i uses the value 
majority(v1, …, vn-1). 



+
Algorithm OM: Example (1/4) 

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A	
   R	
   A	
   R	
   A	
   R	
   OM(2)	
  

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A	
   R	
   A	
   R	
   A	
   R	
   OM(2)	
  
L1	
   X	
   CA	
   CA	
   CA	
   CA	
   CA	
   OM(1)	
  

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A	
   R	
   A	
   R	
   A	
   R	
   OM(2)	
  
L2	
   X	
   CR	
   CR	
   CR	
   CR	
   CR	
   OM(1)	
  

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A	
   R	
   A	
   R	
   A	
   R	
   OM(2)	
  
L3	
   X	
   CR	
   CR	
   CR	
   CR	
   CR	
   OM(1)	
  



+
Algorithm OM: Example (2/4) 

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A	
   R	
   A	
   R	
   A	
   R	
   OM(2)	
  
L1	
   X	
   CA	
   CA	
   CA	
   CA	
   CA	
   OM(1)	
  

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A	
   R	
   A	
   R	
   A	
   R	
   OM(2)	
  
L1	
   X	
   CA	
   CA	
   CA	
   CA	
   CA	
   OM(1)	
  
L2	
   X	
   X	
   1A	
   1A	
   1A	
   1A	
   OM(0)	
  

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A	
   R	
   A	
   R	
   A	
   R	
   OM(2)	
  
L1	
   X	
   CA	
   CA	
   CA	
   CA	
   CA	
   OM(1)	
  
L2	
   X	
   X	
   1A	
   1A	
   1A	
   1A	
   OM(0)	
  
L3	
   X	
   1R	
   X	
   1R	
   1R	
   1R	
   OM(0)	
  

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A	
   R	
   A	
   R	
   A	
   R	
   OM(2)	
  
L1	
   X	
   CA	
   CA	
   CA	
   CA	
   CA	
   OM(1)	
  
L2	
   X	
   X	
   1A	
   1A	
   1A	
   1A	
   OM(0)	
  
L3	
   X	
   1R	
   X	
   1R	
   1R	
   1R	
   OM(0)	
  
L4	
   X	
   1A	
   1A	
   X	
   1A	
   1A	
   OM(0)	
  
L5	
   X	
   1A	
   1A	
   1A	
   X	
   1A	
   OM(0)	
  
L6	
   X	
   1A	
   1A	
   1A	
   1A	
   X	
   OM(0)	
  

MAJORITY	
  (L1)	
   X	
   A	
   ?	
   A	
   A	
   A	
  



+
Algorithm OM: Example (3/4) 

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A	
   R	
   A	
   R	
   A	
   R	
   OM(2)	
  
L1	
   X	
   X	
   2R	
   2R	
   2R	
   2R	
   OM(0)	
  
L2	
   CR	
   X	
   CR	
   CR	
   CR	
   CR	
   OM(1)	
  
L3	
   2A	
   X	
   X	
   2A	
   2A	
   2A	
   OM(0)	
  
L4	
   2R	
   X	
   2R	
   X	
   2R	
   2R	
   OM(0)	
  
L5	
   2R	
   X	
   2R	
   2R	
   X	
   2R	
   OM(0)	
  
L6	
   2R	
   X	
   2R	
   2R	
   2R	
   X	
   OM(0)	
  

MAJORITY(L2)	
   R	
   X	
   ?	
   R	
   R	
   R	
  



+
Algorithm OM: Example (4/4) 

Decision	
  Ame…	
  

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  

MAJORITY(L1)	
   A	
   A	
   ?	
   A	
   A	
   A	
  

MAJORITY(L2)	
   R	
   R	
   ?	
   R	
   R	
   R	
  

MAJORITY(L3)	
   R	
   R	
   ?	
   R	
   R	
   R	
  

MAJORITY(L4)	
   R	
   R	
   ?	
   R	
   R	
   R	
  

MAJORITY(L5)	
   A	
   A	
   ?	
   A	
   A	
   A	
  

MAJORITY(L6)	
   R	
   R	
   ?	
   R	
   R	
   R	
  

MAJORITY	
   R	
   R	
   ?	
   R	
   R	
   R	
  



+
A solution: Signed Messages (1/2) 

n  BGP is difficult because traitors can lie. 

 

A4. 

 (a) A loyal general’s signature cannot be forged, and 
 any alteration of the contents of his signed messages 
 can be detected. 

 (b) Anyone can verify the authenticity of a general’s 
 signature.  

 

n  It works with m traitors for any number of generals. 



+
A solution: Signed Messages (2/2) 

Algorithm SM(m). 
Initially Vi = { }. 
1.  The commander signs and sends his value to every lieutenant. 
2.  For each i: 

A.  If Lieutenant i receives a message of the form v:0 from the 
commander and he has not yet received any order, then 

i.  He lets Vi equal {v}; 
ii.  He sends the message v:0:i to every other lieutenant. 

B.  If lieutenant i receives a message of the form v:0:j1:…:jk and v is not 
in the set Vi, then 

i.  He adds v to Vi; 
ii.  If k < m, then he sends the message v:0:j1:…:jk:i to every 

lieutenant other than j1,…jk. 

3.  For each i: When Lieutenant i will receive no more messages, 
he obeys the order choice(Vi). 



+
Algorithm SM: Example (1/4) 

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A:0	
   R:0	
   A:0	
   R:0	
   A:0	
   R:0	
  
Vi	
   A	
   R	
   ?	
   R	
   A	
   R	
  

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A:0	
   R:0	
   A:0	
   R:0	
   A:0	
   R:0	
  
L1	
   -­‐	
   A:0:1	
   A:0:1	
   A:0:1	
   A:0:1	
   A:0:1	
  
Vi	
   A	
   A,R	
   A	
   A,R	
   A	
   A,R	
  

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A:0	
   R:0	
   A:0	
   R:0	
   A:0	
   R:0	
  
L1	
   -­‐	
   A:0:1	
   A:0:1	
   A:0:1	
   A:0:1	
   A:0:1	
  
L2	
   -­‐	
   -­‐	
   A:0:1:2	
   A:0:1:2	
   A:0:1:2	
   A:0:1:2	
  
Vi	
   A	
   A,R	
   A	
   A,R	
   A	
   A,R	
  

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A:0	
   R:0	
   A:0	
   R:0	
   A:0	
   R:0	
  
L1	
   -­‐	
   A:0:1	
   A:0:1	
   A:0:1	
   A:0:1	
   A:0:1	
  
L2	
   -­‐	
   -­‐	
   A:0:1:2	
   A:0:1:2	
   A:0:1:2	
   A:0:1:2	
  
L5	
   -­‐	
   ACK	
   ACK	
   ACK	
   -­‐	
   ACK	
  
Vi	
   A	
   A,R	
   A	
   A,R	
   A	
   A,R	
  



+
Algorithm SM: Example (2/4) 

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A:0	
   R:0	
   A:0	
   R:0	
   A:0	
   R:0	
  
L1	
   -­‐	
   A:0:1	
   A:0:1	
   A:0:1	
   A:0:1	
   A:0:1	
  
L2	
   -­‐	
   -­‐	
   A:0:1:2	
   A:0:1:2	
   A:0:1:2	
   A:0:1:2	
  
L5	
   -­‐	
   ACK	
   ACK	
   ACK	
   -­‐	
   ACK	
  
L2	
   R:0:2	
   -­‐	
   R:0:2	
   R:0:2	
   R:0:2	
   R:0:2	
  
Vi	
   A,R	
   A,R	
   A,R	
   A,R	
   A,R	
   A,R	
  

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A:0	
   R:0	
   A:0	
   R:0	
   A:0	
   R:0	
  
L1	
   -­‐	
   A:0:1	
   A:0:1	
   A:0:1	
   A:0:1	
   A:0:1	
  
L2	
   -­‐	
   -­‐	
   A:0:1:2	
   A:0:1:2	
   A:0:1:2	
   A:0:1:2	
  
L5	
   -­‐	
   ACK	
   ACK	
   ACK	
   -­‐	
   ACK	
  
L2	
   R:0:2	
   -­‐	
   R:0:2	
   R:0:2	
   R:0:2	
   R:0:2	
  
L1	
   -­‐	
   R:0:2:1	
   R:0:2:1	
   R:0:2:1	
   R:0:2:1	
   R:0:2:1	
  
Vi	
   A,R	
   A,R	
   A,R	
   A,R	
   A,R	
   A,R	
  

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  
C	
   A:0	
   R:0	
   A:0	
   R:0	
   A:0	
   R:0	
  
L1	
   -­‐	
   A:0:1	
   A:0:1	
   A:0:1	
   A:0:1	
   A:0:1	
  
L2	
   -­‐	
   -­‐	
   A:0:1:2	
   A:0:1:2	
   A:0:1:2	
   A:0:1:2	
  
L5	
   -­‐	
   ACK	
   ACK	
   ACK	
   -­‐	
   ACK	
  
L2	
   R:0:2	
   -­‐	
   R:0:2	
   R:0:2	
   R:0:2	
   R:0:2	
  
L1	
   -­‐	
   R:0:2:1	
   R:0:2:1	
   R:0:2:1	
   R:0:2:1	
   R:0:2:1	
  
L3	
   R	
   R	
   R	
   R	
   R	
   R	
  
Vi	
   A,R	
   A,R	
   A,R	
   A,R	
   A,R	
   A,R	
  



+
Algorithm SM: Example (3/4) 



+
Algorithm SM: Example (4/4) 

Decision	
  Ame…	
  

Generals	
   L1	
   L2	
   L3	
   L4	
   L5	
   L6	
  

CHOICE(V)	
   A,	
  R	
   A,	
  R	
   ?	
   A,	
  R	
   A,	
  R	
   A,	
  R	
  



+
Missing Communication Paths 



+
Algorithm OM(m,p) [Remarks] 

n  BGP is solved by OM(m, 3m) (3m + 1 generals minimum) 

n  If one lieutenant is unreachable, more than half of his/her 
paths connect with loyal lieutenants 

n  Recursively name one of your lieutenants as the new 
commander and send the order  

n Applying OM(m, 3m) with 3m+1 generals is 
the same as OM(m)! 



+
Algorithm SM(m) weakly 
connected [Remarks] 

n  Can have missing links 

n  Requires subgraph of loyals is connected 

n  Can be solved with SM(n-2) 



+
BGP in practice 

n  Majority voting as a way to provide reliability 

n  What does it take to work? 
n  Input synchronization (IC1) 

n  If input is non-faulty, all non-faulty processes provide same output 
(IC2) 

n  A1 – communication line vs node failure 
n  No problem: OM(m) or SM(m) can deal with it 

n  A2 – Fixed lines vs switching network 
n  Not needed if A4 is assumed 

n  A3 - Timeouts 

n  A4 - Cryptography 



+
Final Thoughts [Conclusion] 

n  Reliability involves coping with failure of components 

n  Two solutions: Oral and Signed Messages 

n  Expensive: 
n  Time: time spent with signatures and message latencies 

n  Messages: message paths > m+1; O(n^(m-1)) messages; 

n  BGP used for input synchronization, handling m faults 



+
Final Thoughts [Discussion] 

n  Can we afford 3m+1 nodes? 

n  How to determine m? 

n  How do you build a sub-graph of loyal lieutenants in a hostile 
environment? 

n  What alternatives can we implement: 
n  On a secure environment (just dealing with failures)? 

n  On a hostile environment (dealing with traitors)? 



+
BGP: Example 

From Amazon’s S3 Service Health Dashboard (July 7, 2008): 

“We've now determined that message corruption was the cause of the 
server-to-server communication problems. More specifically, we found 
that there were a handful of messages on Sunday morning that had a 
single bit corrupted such that the message was still intelligible, but 
the system state information was incorrect. We use MD5 checksums 
throughout the system, for example, to prevent, detect, and recover from 
corruption that can occur during receipt, storage, and retrieval of 
customers' objects. However, we didn't have the same protection in 
place to detect whether this particular internal state information 
had been corrupted. As a result, when the corruption occurred, we 
didn't detect it and it spread throughout the system causing the 
symptoms described above. We hadn't encountered server-to-server 
communication issues of this scale before and, as a result, it took some 
time during the event to diagnose and recover from it.” 

Reference: [2] 



+
Proofs* 
*Available upon request 



+
3 Generals cannot handle 1 Traitor 

n  If Commander is loyal, IC2 is always satisfied and IC1 follows 
from IC2 

n  If Commander is traitor, then: 
n  Lieutenant 1 will attack 

n  Lieutenant 2 will retreat 

n  IC1 is violated! 



+
No solution with fewer than 3m+1 
exist 

n  Assume a solution with 3m or fewer exist 

n  Call the 3m generals and the m traitors the Albanian Generals 

n  Each Byzantine general “simulates” at most m Albanian generals 

n  The Byzantine commander simulates the Albanian commander 
and m-1 Albanian generals 

n  Since only one Byzantine general can be a traitor, and he 
simulates at most m Albanians, at most m Albanians are traitors. 

n  By previous proof, no solution exists. 

n  Contradiction! 



+
Approximate agreement (1/2) 

n  IC1’. All loyal lieutenants attack within 10 minutes of one 
another. 

n  IC2’. If the commanding general is loyal, then every loyal 
lieutenant attacks within 10 minutes of the time given in the 
commander’s order. 

n  After receiving the attack time from the commander, a lieutenant 
does one of the following: 
n  If the time is 1:10 or earlier, then attack. 
n  If the time is 1:50 or later, then retreat. 
n  Otherwise, continue to step (2). 

n  Ask the other lieutenant what decision he reached in step (1). 
n  If the other lieutenant reached a decision, then make the same 

decision he did. 
n  Otherwise, retreat. 



+
Approximate agreement (2/2) 



+
Lemma 1 – OM(m) 

n  For any m and k, Algorithm OM(m) satisfies IC2 if there are 
more than 2k + m generals and at most k traitors. 

n  Only prove when commander is loyal. By induction: 
n  If commander is loyal, OM(0) is trivial. 

n  Assume is true for m-1, m > 0 

n  Step (1), commander sends v to all n-1 lieutenants 

n  Step (2), loyal lieutenants apply OM(m-1) with n-1 generals 

n  Since n > 2k + m, (n-1) > [2k + (m-1)], by induction hypothesis 
you can conclude every loyal lieutenant gets vj = v for each 
loyal lieutenant j. 

n  Since there are at most k traitors, and (n-1) > [2k + (m-1)] > 2k, 
a majority of the n-1 lieutenants are loyal. Hence, each loyal 
lieutenant has vi = v for a majority of the n-1 values i, so he 
obtains majority(v1,…vn-1) = v in step (3), proving IC2. 



+
Theorem 1 – OM(m)  

n  For any m, Algorithm OM(m) satisfies conditions IC1 and IC2 
if there are more than 3m generals and at most m traitors. 

n  Using induction on m: 
n  If there are no traitors, OM(0) is trivial and satisfies IC1 and IC2. 
n  Assume OM(m-1) is true and prove for OM(m): 

n  If commander is loyal, make k=m in lemma 1, OM(m) satisfies 
IC2. IC1 follows from IC2 if commander is loyal. 

n  Only prove IC1 when commander is traitor: 
n  There are at most m-1 traitors (commander is one of them) 
n  OM(m-1) satisfies IC1 and IC2. 
n  For each j, any two loyal lieutenants get the same value for vj 

in step (3) and the same value for majority(v1,…vn-1). 



+
How to determine no more 
messages will be sent? 

n  By induction on k, 
n  A sequence of lieutenants j1,…,jk with k < m 

n  A lieutenant can receive at most one message of the form   
v:0:j1:…:jk in step (2) 

n  By A3, the lieutenant will have to sign and send the message or 
send a message reporting that he will not send the message. 



+
Theorem 2. 
n  Theorem 2. For any m, Algorithm SM(m) solves the Byzantine 

Generals Problem if there are at most m traitors. 
n  First prove IC2: 

n  Commander sends v:0 to every lieutenant in step (1). 
n  Every loyal lieutenant will receive the order in step (2)(A). 
n  Since no traitor can forge the order, then loyal lieutenants do not 

receive additional orders on step (2)(B). 
n  The set Vi consists only of v. 

n  IC1 only needs to be proved when the commander is a traitor: 
n  Only need to prove that if i puts order v into Vi in step(2), then j 

must put the same order into Vj: 
n  If i receives the order v in step (2)(A), then he sends it to j in step 

(2)(A)(ii); so j receives it (by A1). 
n  If I adds the order to Vi in step (2)(B), then he must have received 

v:0:j1:…:jk at some point. If j is one of the jr, then by A4 he must 
already received the order v. If not: 
n  k < m, i sends it to j 
n  k=m, since the commander is a traitor, then at most m-1 of the 

lieutenants are traitors. One of the loyal lieutenants must have 
signed the order and sent it to j. 



+
Lemma 2 

n  Lemma 2. For any m>0 and any p>(2k + m), Algorithm 
OM(m,p) satisfies IC2 if there are at most k traitors. 
n  For m=1 

n  Lieutenant obtains majority(v1, … , vp) where each vi is sent 
along a path disjoint from other paths. 

n  Since p>(2k + m), more than half of the paths are composed by 
loyal lieutenants 

n  The majority of the values will be the same as that of the 
commander 

n  Assume for m-1, m > 1 
n  If commander is loyal each of the p lieutenants in N gets the 

correct value. 
n  Since p>2k, a majority of them are loyal and by hypothesis, 

each one of them sends the correct value. 



+
Theorem 3 

n  Theorem 3. For any m>0 and any p>3m, Algorithm OM(m,p) 
solves BGP if there are at most m traitors. 
n  By lemma 2, k=m solves IC2. 
n  Prove IC1 when commander is traitor: 

n  If m=1 all lieutenants get the same values in step (4) because 
paths don’t go through the commander. 

n  If m>1, apply induction 
n  m=0 is trivial 
n  Assume m-1 is true 

n  Since commander is traitor, you have p-1 other lieutenants 
which (p-1) > (3m-1) > 3(m-1) 

n  (p-1)/3 > (m-1), by induction hypothesis holds true and all 
loyal lieutenants apply majority 



+
Theorem 4 

n  Theorem 4. For any m and d, if there are at most m traitors and the subgraph 
of loyal generals has diameter d, then Algorithm SM(m + d -1) solves the 
Byzantine Generals Problem. 
n  First prove IC2: 

n  Commander sends v:0 to every loyal lieutenant in step (1) (guaranteed by hyp). 
n  Every loyal lieutenant will receive the order in step (2)(A). 
n  Since no traitor can forge the order, then loyal lieutenants do not receive 

additional orders on step (2)(B). 
n  The set Vi consists only of v. 

n  IC1 only needs to be proved when the commander is a traitor: 
n  Only need to prove that if i puts order v into Vi in step(2), then j must put the same 

order into Vj: 
n  If i receives the order v in step (2)(A), then he sends it to j in step (2)(A)(ii); so j 

receives it (by A1). 
n  If I adds the order to Vi in step (2)(B), then he must have received v:0:j1:…:jk at 

some point. If j is one of the jr, then by A4 he must already received the order v. 
If not: 
n  k < m, i sends it to j 
n  k=m, since the commander is a traitor, then at most m-1 of the lieutenants 

are traitors. One of the loyal lieutenants must have signed the order and sent 
it to j. 



+
Corollary 

n  If the diameter of the sub-graph of loyal lieutenants is d, then 
there must be d+1 lieutenants. 

n  Therefore, m = n – d – 1. 

n  By theorem 4, SM(m+d-1) = SM(n-d-1+d-1) = SM(n-2) 
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