
SCHISM: A WORKLOAD-DRIVEN

APPROACH TO DATABASE

REPLICATION AND PARTITIONING

ZEYNEP KORKMAZ

CS742 - PARALLEL AND DISTRIBUTED DATABASE SYSTEMS

UNIVERSITY OF WATERLOO

OUTLINE

1. Background

2. What is Schism?

3. Cost of Distributed Transactions

4. Partitioning and Replication

5. Optimization

6. Experiments

7. Conclusion

8. Discussion - Critiques

BACKGROUND

Problem:

• Scaling database workloads

Solution:

• Partioning minimize the number of nodes involved in answering a query

• Round-robin

• Range

• Hash

• Social networking workloads

• Hard to partition

BACKGROUND

Problem:

• Distributed transactions are expensive

Solution:

• Minimize the number of distributed transactions, while producing

balanced partitions

• Schism

SCHISM

• A novel graph-based, data driven partitioning system for
transactional workloads.

• Data pre-processing

• Input: trace of transactions & DB

• Read and write sets

• Creating the graph

• Nodes: tuples – Edges: transactions

• Partitioning the graph

• Balanced min-cut partitioning & replication

• Explaining the partition

• Decision tree on frequent attribute set

• Final validation

• The best strategy?

COST OF DISTRIBUTED

TRANSACTIONS

• Transactions access data on a single node

• No additional overhead

•Distributed transactions are expensive:

• Contention: Overheads of locking

• Distributed deadlocks

• Complex statements need to access data from multiple servers

• Experiment:

• Single transaction→two rows; issuing two statements

• Every transaction is run on a server

• Every transaction is distributed

COST OF DISTRIBUTED

TRANSACTIONS

•Reducing throughput by a factor of 2

•Double the average latency

GRAPH REPRESENTATION

• Graph representation: build a graph from transaction traces

• Node: tuple

• Edges: usage of the tuples within a transaction

• Edge weights: #transactions that co-access a pair of tuples

• Hypergraphs?

• Extension: replicated tuples

GRAPH REPRESENTATION

2
3

5

1

4 PARTITION 0

PARTITION 1

 BEGIN
 UPDATE account SET bal=bal-1k WHERE name="carlo";
 UPDATE account SET bal=bal+1k WHERE name="evan";
 COMMIT

 BEGIN
 UPDATE SET bal=bal+1k
 WHERE bal < 100k;
 COMMIT

 BEGIN
 SELECT * FROM account
 WHERE id IN {1,3}
 ABORT

 BEGIN
 UPDATE account SET bal=60k
 WHERE id=2;
 SELECT * FROM account
 WHERE id=5;
 COMMIT

transaction edges

1

1
1

1

1

1

account

....
yang5 12k
eugene4 29k

2

name

129ksam
60kevan

id

3

80k1
bal

carlo

GRAPH WITH REPLICATION

• Extension to basic graph representation:

• Tuple-level replication

• A singel node: a singel tuple (basic graph)

• Star-shaped configuration:

• n+1 nodes: a single tuple

• n: #transactions that access the tuple

• Replication edge weights: #transactions that update the tuple

in the workload

GRAPH WITH REPLICATION

1

2 3

1 1

1

2 2

2

2

4

2

2

5

5

5

2 2

5

55

55

5

3

3

3

3

replication edges
transaction edges

1

1

1

1

1

1

5

GRAPH PARTITIONING

•Splits graph into k non-overlapping partitions:

• Overall cost of the cut edges is minimized (min-cut)

• Keep the weight of partitions within a constant factor of

perfect balance

• Decide replication of tuple and distributed updates or place it

in a single partition and distributed transactions?

•Use METIS to partition the graph

• Assign nodes to partitions

GRAPH PARTITIONING

1

2 3

1 1

1

2 2

2

2

4

2

2

5

5

5

2 2

5

55

55

5

3

3

3

3

PARTITION 0

PARTITION 1

replication edges
transaction edges

1

1

1

1

1

1

5
5 1

4 1

3 0

2 0

1 R

tuple

id

partition

label

•Fine-grained mapping between nodes and partitions

• Look-up table on attributes that frequently appears in WHERE clauses.

GRAPH PARTITIONING

• Look-up tables:

• Stored in RAM?

• Efficient maintanence for updates

• Not ideal for large DB or insert-heavy workloads

• Another phase of Schism: Explanation

• Predicate based partitioning

EXPLAINING THE PARTITION

• Find a compact model/rules that represent the partitions

• Decision Trees

• Values: tuples

• Labels: partitions

• Replicated tuples are labeled by replication identifier

EXPLAINING THE PARTITION

• The explanation is useful if;

• It is base on frequent attributes

• It does not reduce the partitioning quality too much

• It avoids over-fitting

• prunning

FINAL VALIDATION

• Compare solutions

• Bestsolution:

• Provides the smallest number of distributed transactions.

• Fine-grained per tuple partitioning

• Range predicate partitioning

• Hash partitioning

• Full replication

• Tie? Lowest complexity

• Hash vs predicate?

OPTIMIZATIONS

• Scalability: Graph partitioning scale well in terms of the

number of partitions, but running time increases substantially

with graph size.

OPTIMIZATIONS

• Reducing the size of graph with a limited impact on quality:

• Transaction-level sampling

• Reducing #edges

• Tuple-level sampling

• Reducing #nodes

• Tuple-coalescing

• Represents tuples that are always accessed together

EXPERIMENTS

•The experiments compare #transactions produced by;

• Schism

• Fine-grained per tuple

• Range predicates

• Best manual partitioning

• Replication of all tables

• Hash partitioning

•The fraction of the sampled dataset & #partitions

•Final validation

EXPERIMENTS

• Datasets:

• Yahoo Cloud Serving Benchmark

• Workload A: reads – updates (%50-%50)

• Workload E: short scan – one tuple update (%95-%5)

• TPC-C: write intensive OLTP workload

• Sampling, #partitions

• 2W

• 50W

• TPC-E: read intensive OLTP workload

• Complex (33 tables, 188 columns, 10 kinds of transactions)

• Epinions.com:

• Social website, n-to-n relations in the schema

EXPERIMENTS

CONCLUSION

•Schism;

• System for fine-grained partitioning of OLTP DB

• Represents DB and transactions as a graph

• Supports tuple-level replication

• Uses classification techniques to represent partitions

• Uses graph-partitioning algorithm

• Proposes sampling to reduce graph size

DISCUSSIONS

•Schism overcome the partitioning challenges

• Distributed transactions

• Many-to-many relations

• The quality of sampling & decision tree?

• Prunning?

• What is the running time of Schism including all steps?

• Overhead of complexity - Choose the simplest.

• Overhead of fine-grained partitioning?

DISCUSSIONS

• The provided scalability is a result of METIS graph

partitioning

•Schism focuses on using classification techniques to

transform fine-grained partitioning into range partitions.

• How to use fine-grained partitioning

• Hypergraph vs collection of edges

DISCUSSIONS

• Statements that access tuples using partitioning attributes

are sent to those partitions

• Access table using other attributes?

• Broadcast the statement to all partitions

• More complex statements: access multiple tables using

non-partition attributes?

• Not currently handled.

THANK YOU

