SCHISM: A WORKLOAD-DRIVEN
APPROACH TO DATABASE
REPLICATION AND PARTITIONING

ZEYNEP KORKMAZ
CS742 - PARALLEL AND DISTRIBUTED DATABASE SYSTEMS
UNIVERSITY OF WATERLOO

OUTLINE

Background

What is Schism?

Cost of Distributed Transactions
Partitioning and Replication
Optimization

Experiments

Conclusion

© N o a0 bk W D E

Discussion - Critiques

BACKGROUND

Problem:
 Scaling database workloads

Solution:

 Partioning minimize the number of nodes involved in answering a query
* Round-robin
* Range
* Hash

« Social networking workloads

« Hard to partition

BACKGROUND

Problem:
« Distributed transactions are expensive

Solution:

« Minimize the number of distributed transactions, while producing
balanced partitions

e Schism

SCHISM

« A novel graph-based, data driven partitioning system for
transactional workloads.

- Data pre-processing

* Input: trace of transactions & DB

* Read and write sets
« Creating the graph

* Nodes: tuples — Edges: transactions
- Partitioning the graph

« Balanced min-cut partitioning & replication
- Explaining the partition

« Decision tree on frequent attribute set
- Final validation

* The best strategy?

COST OF DISTRIBUTED
TRANSACTIONS

* Transactions access data on a single node

* No additional overhead
Distributed transactions are expensive:

» Contention: Overheads of locking
» Distributed deadlocks
- Complex statements need to access data from multiple servers

* Experiment:
* Single transaction—two rows; issuing two statements

« Every transaction is run on a server
« Every transaction is distributed

COST OF DISTRIBUTED
TRANSACTIONS

*Reducing throughput by a factor of 2

Double the average latency

20k : -
-~ Single Partiion —+—
= Distributed - —=--
8 40k —
&
7
2 0k
g _”___F__-l:
= 20k
£
3 10k S
=
|_

[]]

1 2 3 4 5

GRAPH REPRESENTATION

« Graph representation: build a graph from transaction traces

* Node: tuple

- Edges: usage of the tuples within a transaction

- Edge weights: #transactions that co-access a pair of tuples
* Hypergraphs?

« Extension: replicated tuples

GRAPH REPRESENTATION

[transaction edges

BEGIN

UPDATE account SET bal=60k
WHERE id=2;

SELECT * FROM account
WHERE id=5;

COMMIT

Mi name

carlo 80k
evan 60k
sam 129k
eugene 29k
yang 12k

a1l

BEGIN
UPDATE account SET bal=bal-1k WHERE name="carlo";
UPDATE account SET bal=bal+1k WHERE name="evan";

COMMIT

L BEGIN

SELECT * FROM account
'4«— WHERE id IN {1,3}
ABORT

BEGIN

UPDATE SET bal=bal+1k
WHERE bal < 100k;

COMMIT

PARTITION O
PARTITION 1

GRAPH WITH REPLICATION

» Extension to basic graph representation:

 Tuple-level replication
A singel node: a singel tuple (basic graph)
« Star-shaped configuration:

* n+1 nodes: a single tuple
* n: #transactions that access the tuple

* Replication edge weights: #transactions that update the tuple
In the workload

GRAPH WITH REPLICATION

[1 replication edges
[transaction edges

GRAPH PARTITIONING

*Splits graph into k non-overlapping partitions:

 Overall cost of the cut edges is minimized (min-cut)

» Keep the weight of partitions within a constant factor of
perfect balance

 Decide replication of tuple and distributed updates or place it
In a single partition and distributed transactions?

*Use METIS to partition the graph

 Assign nodes to partitions

GRAPH PARTITIONING

[1 replication edges
[transaction edges

tuple |partition
“ id label
1 R
2 0
3 0
4 1
5 1

*Fine-grained mapping between nodes and partitions
 Look-up table on attributes that frequently appears in WHERE clauses.

GRAPH PARTITIONING

* Look-up tables:

- Stored in RAM?
- Efficient maintanence for updates
* Not ideal for large DB or insert-heavy workloads

* Another phase of Schism: Explanation

* Predicate based partitioning

EXPLAINING THE PARTITION

* Find a compact model/rules that represent the partitions
* Decision Trees

 Values: tuples
* Labels: partitions
* Replicated tuples are labeled by replication identifier

(id = 1) — partitions = {0, 1}
(2 < id < 4) — partition =0
(id = 4) — partition = 1

EXPLAINING THE PARTITION

* The explanation is useful if;

* It is base on frequent attributes
» It does not reduce the partitioning quality too much

* It avoids over-fitting
* prunning

FINAL VALIDATION

« Compare solutions
» Bestsolution:

* Provides the smallest number of distributed transactions.
* Fine-grained per tuple partitioning
* Range predicate partitioning
* Hash partitioning
* Full replication
 Tie? Lowest complexity
» Hash vs predicate?

OPTIMIZATIONS

« Scalability: Graph partitioning scale well in terms of the
number of partitions, but running time increases substantially
with graph size.

Datasel Tuples Transactions Nodes Edges

Epinions 2.5M 100k 0.6M 5M
TPCC-50 25.0M 00k 2.5M 65M
TPC-E 2.0M 00k 3.0M 100M
45 | | | I | | | R
T 40 | -
E 35 .;__-I—s:—n__—i--"*_/* _
@ 30 — .
E L | Epinions.com ——
@ ol] TPCCEOW —s—
S 15 sy g e X TREE
= 0L
& T 4ttt
0 N AN RN N AN NN N R

2 4 8 16 32 64 128 256 512

number of partitions

OPTIMIZATIONS

 Reducing the size of graph with a limited impact on quality:

» Transaction-level sampling
* Reducing #edges
* Tuple-level sampling
* Reducing #nodes
* Tuple-coalescing
* Represents tuples that are always accessed together

EXPERIMENTS

*The experiments compare #transactions produced by;

* Schism
* Fine-grained per tuple
* Range predicates
- Best manual partitioning
* Replication of all tables
* Hash partitioning
*The fraction of the sampled dataset & #partitions

*Final validation

EXPERIMENTS

e Datasets:

 Yahoo Cloud Serving Benchmark

« Workload A: reads — updates (%50-%50)

* Workload E: short scan — one tuple update (%95-%5)
« TPC-C: write intensive OLTP workload

« Sampling, #partitions

. 2W

- 50W
* TPC-E: read intensive OLTP workload

« Complex (33 tables, 188 columns, 10 kinds of transactions)
* Epinions.com:

» Social website, n-to-n relations in the schema

EXPERIMENTS

B 5CHISM OMANUAL B REPLICATION OHASHING
100% 04 1% 100%59.9% 100%
50%
68.9% 5% |
62.1%
1! |—
12.7%12. 10,890, 12.1% % 8% B
| " 4.5%°% 6.136.5% ::
| | I -- I e | | 1
YCSB-A YCSB-E TPCC-2W TPCC-2W TPCC-50W TPC-E EPIMIONS EPINIONS RAMDOM
any 100 2 2 10 2 2 10 10
any 1% 50% 0.5% 1% L% 15% 15% any
hashing range-predicates | range-predicates | range-predicates | range-predicates | range-predicates | look-up table look-up table hashing

CONCLUSION

Schism:

-« System for fine-grained partitioning of OLTP DB

* Represents DB and transactions as a graph

« Supports tuple-level replication

* Uses classification techniques to represent partitions
 Uses graph-partitioning algorithm

* Proposes sampling to reduce graph size

DISCUSSIONS

*Schism overcome the partitioning challenges

* Distributed transactions
- Many-to-many relations

* The quality of sampling & decision tree?

* Prunning?

 What is the running time of Schism including all steps?

* Overhead of complexity - Choose the simplest.
» Overhead of fine-grained partitioning?

DISCUSSIONS

 The provided scalability is aresult of METIS graph
partitioning

*Schism focuses on using classification techniques to
transform fine-grained partitioning into range partitions.

» How to use fine-grained partitioning

 Hypergraph vs collection of edges

DISCUSSIONS

« Statements that access tuples using partitioning attributes
are sent to those partitions

* Access table using other attributes?

 Broadcast the statement to all partitions

 More complex statements: access multiple tables using
non-partition attributes?

* Not currently handled.

THANK YOU

