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BACKGROUND 

Problem:  

• Scaling database workloads 

Solution: 

• Partioning minimize the number of nodes involved in answering a query 

• Round-robin 

• Range 

• Hash 

• Social networking workloads 

• Hard to partition 



BACKGROUND 

Problem: 

• Distributed transactions are expensive 

Solution: 

• Minimize the number of distributed transactions, while producing 

balanced partitions 

• Schism 

 



SCHISM 

• A novel graph-based, data driven partitioning system for 
transactional workloads. 

• Data pre-processing 

• Input: trace of transactions & DB 

• Read and write sets 

• Creating the graph 

• Nodes: tuples – Edges: transactions 

• Partitioning the graph 

• Balanced min-cut partitioning & replication 

• Explaining the partition 

• Decision tree on frequent attribute set 

• Final validation 

• The best strategy? 

 

 



COST OF DISTRIBUTED 

TRANSACTIONS 

• Transactions access data on a single node 

• No additional overhead 

•Distributed transactions are expensive: 

• Contention: Overheads of locking  

• Distributed deadlocks 

• Complex statements need to access data from multiple servers 

• Experiment: 

• Single transaction→two rows; issuing two statements 

• Every transaction is run on a server 

• Every transaction is distributed  



COST OF DISTRIBUTED 

TRANSACTIONS 

•Reducing throughput by a factor of 2 

•Double the average latency 

 



GRAPH REPRESENTATION 

• Graph representation: build a graph from transaction traces 

• Node: tuple 

• Edges: usage of the tuples within a transaction 

• Edge weights: #transactions that co-access a pair of tuples 

• Hypergraphs? 

• Extension: replicated tuples 



GRAPH REPRESENTATION 
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GRAPH WITH REPLICATION 

• Extension to basic graph representation: 

• Tuple-level replication 

• A singel node: a singel tuple (basic graph) 

• Star-shaped configuration:  

• n+1 nodes: a single tuple 

• n: #transactions that access the tuple 

• Replication edge weights: #transactions that update the tuple 

in the workload 



GRAPH WITH REPLICATION 
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GRAPH PARTITIONING 

•Splits graph into k non-overlapping partitions: 

• Overall cost of the cut edges is minimized (min-cut) 

• Keep the weight of partitions within a constant factor of 

perfect balance 

• Decide replication of tuple and distributed updates or place it 

in a single partition and distributed transactions? 

 

•Use METIS to partition the graph 

• Assign nodes to partitions 

 



GRAPH PARTITIONING 
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•Fine-grained mapping between nodes and partitions 

• Look-up table on attributes that frequently appears in WHERE clauses. 



GRAPH PARTITIONING 

• Look-up tables: 

• Stored in RAM? 

• Efficient maintanence for updates 

• Not ideal for large DB or insert-heavy workloads 

 

• Another phase of Schism: Explanation 

• Predicate based partitioning 



EXPLAINING THE PARTITION 

• Find a compact model/rules that represent the partitions 

• Decision Trees 

• Values: tuples 

• Labels: partitions 

• Replicated tuples are labeled by replication identifier 



EXPLAINING THE PARTITION 

• The explanation is useful if; 

• It is base on frequent attributes 

• It does not reduce the partitioning quality too much 

• It avoids over-fitting 

• prunning 



FINAL VALIDATION 

• Compare solutions 

• Bestsolution: 

• Provides the smallest number of distributed transactions. 

• Fine-grained per tuple partitioning 

• Range predicate partitioning 

• Hash partitioning 

• Full replication 

• Tie? Lowest complexity 

• Hash vs predicate? 



OPTIMIZATIONS 

• Scalability: Graph partitioning scale well in terms of the 

number of partitions, but running time increases substantially 

with graph size. 

 

 



OPTIMIZATIONS 

• Reducing the size of graph with a limited impact on quality: 

• Transaction-level sampling 

• Reducing #edges 

• Tuple-level sampling 

• Reducing #nodes 

• Tuple-coalescing 

• Represents tuples that are always accessed together 

 



EXPERIMENTS 

•The experiments compare #transactions produced by; 

• Schism 

• Fine-grained per tuple 

• Range predicates 

• Best manual partitioning 

• Replication of all tables 

• Hash partitioning 

•The fraction of the sampled dataset & #partitions 

•Final validation 

 



EXPERIMENTS 

• Datasets: 

• Yahoo Cloud Serving Benchmark 

• Workload A: reads – updates (%50-%50) 

• Workload E: short scan – one tuple update (%95-%5) 

• TPC-C: write intensive OLTP workload 

• Sampling, #partitions 

• 2W 

• 50W  

• TPC-E: read intensive OLTP workload 

• Complex (33 tables, 188 columns, 10 kinds of transactions) 

• Epinions.com:  

• Social website, n-to-n relations in the schema 



EXPERIMENTS 



CONCLUSION 

•Schism;  

• System for fine-grained partitioning of OLTP DB 

• Represents DB and transactions as a graph 

• Supports tuple-level replication 

• Uses classification techniques to represent partitions 

• Uses graph-partitioning algorithm 

• Proposes sampling to reduce graph size  

 



DISCUSSIONS 

•Schism overcome the partitioning challenges 

• Distributed transactions 

• Many-to-many relations 

 

• The quality of sampling & decision tree? 

• Prunning? 

 

• What is the running time of Schism including all steps? 

• Overhead of complexity - Choose the simplest. 

• Overhead of fine-grained partitioning? 



DISCUSSIONS 

• The provided scalability is a result of METIS graph 

partitioning 

 

•Schism focuses on using classification techniques to 

transform fine-grained partitioning into range partitions. 

• How to use fine-grained partitioning 

 

• Hypergraph vs collection of edges 



DISCUSSIONS 

• Statements that access tuples using partitioning attributes 

are sent to those partitions 

• Access table using other attributes? 

• Broadcast the statement to all partitions 

• More complex statements: access multiple tables using 

non-partition attributes? 

• Not currently handled. 
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