

Leveraging Query Logs for Schema Mapping
Generation in U-MAP

Taras Kinash
David R. Cheriton School of Computer Science
University of Waterloo

Problem Overview

Schema Mapping problem is characterized by a set:

(S, T, ∑
S
, ∑

T
, V, ∑

ST
)

INPUT:
➢ S/T – source/target schema

➢ ∑
S
/ ∑

T
– constraints defined on S/T respectively

 (i.e. foreign keys)
➢ V – attribute correspondences between S and T

OUTPUT:

➢ ∑
ST

– a set of tuple generating dependencies,

 representing the schema mapping.

for a in X_Author, b in X_Book
where (a.a_id = b.b_a_id)
exists a' in Y_Author, b' in Y_Book, ba' in Y_Book_Author
where (a'.a_id = ba'.ba_a_id Ʌ b'.b_id = ba'.ba_b_id)
with (a'.a_fname = a.a_fname Ʌ a'.a_lname = a.a_lname
 Ʌ b'.b_title = b.b_title Ʌ b'.b_pub_date = b.b_pub_date)

Example

Referential Integrity Constraints (RIC) approach:

– Exploring referential constraints of the schema to
compute join paths.

– Clio (IBM & UofT), MQG...

Semantic approach:

– Utilize available semantic information from conceptual
schemas (i.e. ER-diagrams or UML).

– Reduced to sub-graph matching.

Existing Solutions

RIC-approach

Proceeds in four steps:

➢ Logical Relations – for each table, join it with all tables it
 references; continue iteratively.

➢ Creating Mappings – chose pairs of logical relations from S
 and T, which cover part of V – these
 would be mappings.

➢ Minimizing Mappings – discard mappings which are subsumed
 or implied by other mappings.

➢ Compiling Mappings – convert mappings into executable
 script.

Constructing
Logical

Relations

Creating
Mappings

Minimizing
Mappings

Compiling
Mappings

Issues with Existing Solutions

● Handling Sibling Relations

● Incomplete Logical Relations

● Handling Attribute Correspondence Conflicts

U-MAP builds on the RIC-approach, in an attempt to resolve
these issues.

Overview of the U-MAP

Mapping
Sibling

Relations

Constructing
Logical Relations

Creating
Mappings

Minimizing
Mappings

Rewriting
Mappings

● Merging Sibling Relations
➢ Identify pairs of potential sibling relations.
➢ Filter out pairs that are not siblings or non-overlapping siblings

(Query Logs are utilized here).
➢ For each applicable pair, combine the two relations into a

“super-relation”.
➢ Update the schema and query logs to reflect this “super-relation”

● Rewriting Mappings
➢ Replace “super-relations” appearing in resulting mappings by

the original sibling relations.

Handling Sibling Relations

RIC-approach only considers forward foreign key
expansion when building logical relations.

How to determine when reverse expansion is
meaningful?

Utilize information from query logs!

Incomplete coverage of Logical Relations

Aggressive Chase Algorithm:
➢ Scan query log, and fill out Forward-Reverse (FR)

index.

➢ For each relation R of the schema, create logical
relation in an alternating manner:

➢ (Forward) Join all the tables that R references, to create
 intermediate logical relation LR'

➢ (Reverse) For each join condition used in previous step,
 look up the reverse join condition in FR-index,
 and join LR' with other tables using these new
 conditions.

➢ Continue in this alternating manner, until no further
forward expansion is possible

Incomplete coverage of Logical Relations cont'd

Example:

SCHEMA (partial):
RELATIONS: A(a1, a2), B(b1, b2), C(c1, c2)

FOREIGN KEYS:

 A(a2) references B(b1)

 C(c2) references B(b1)

QUERY:
SELECT *
FROM A, B, C
WHERE A.a2 = B.b1 AND B.b1 = C.c2

Incomplete coverage of Logical Relations cont'd

FR-index:

Building Logical Relations starting from relation A:
Phase 1 – forward: LR' = A join B

Phase 2 – reverse: LR = LR' join C

Incomplete coverage of Logical Relations cont'd

Forward Reverse

(A.a2, B.b1) (C.c2, B.b1)

(C.c2, B.b1) (A.a2, B.b1)

Formulation:
For two logical relations with sets of attributes {a1,...aI} and {b1,...,bJ}
respectively. The set of correspondences contains tuples of the form
(ai, bj). Pair of correspondences are conflicting if they are of the
form:

<(ai, bj1), (ai, bj2)> or <(ai1, bj), (ai2, bj)>

bj1 & bj2 and ai1 & ai2, respectively, are conflicting
attributes.

Observation:
Conflicting attributes result from using same concepts but in
different contexts.

Resolving Correspondence Conflicts

Solution in two phases:

Attribute Grouping:
● group attributes by context.

Usage-based Conflict Resolution:
● Utilize existing techniques for usage-based schema

matching to come up with the mappings.

Resolving Correspondence Conflicts - Solution

Logical Attribute Path (LAP):

Ak – tables in the schema for k in [0, K]; A0 – initial table

ak – primary key of table Ak; a'k – foreign key in table Ak

LAP(a) = (A0.a'i0=A1.ai1)....(Ak.aik = Ak+1.a'k+1)...AK.a

Query Attribute Path (QAP):

Defined in the same way as LAP, but for a query instead of a LR.

Minimal Distinguishing LAP (MDLAP):

MDLAP(a) is a minimal suffix of LAP(a), such that there does not
exist attribute b in LR, where MDLAP(a) is a suffix of LAP(b).

Definitions

LAP(a) – context of attribute a.

Context of attributes a and b are compared in terms of
common prefix of LAP(a) and LAP(b).

Goal of generating attribute groups:

(1) All attributes in the same groups are non-conflicting with
 each other

(2) For any two attributes a and b in groups G1 and G2 respectively,
 common prefix of LAP(a) and LAP(b) cannot be longer than
 common prefix of LAP(a) and LAP(c), for attribute c in group G1.

(3) The number of groups that satisfy (1) and (2) must be minimal.

Attribute Grouping

Algorithm proceeds in the following way:
● For each conflicting attribute a in a logical relation,

insert LAP(a) into a prefix tree. Each internal node
represents a set of attributes

● Perform depth first search on a prefix tree.
● At each node, check if the corresponding set of

attributes are conflicting.
➢ If yes – continue with search
➢ If no – consider this set to be a group.

Attribute Grouping Algorithm

Key point: consider only mappings where no two attributes in
same group on one side are mapped to two attributes in
different groups on the other side.

Want to use existing techniques for schema matching based
on usage information (i.e. examining query logs)

BUT, must be context-aware when examining query logs!

Usage-based Conflict Resolution

For each attribute a in each query of the log,
compute QAP(aq); this may not be unique.

For each attribute al in logical relation, compute MDLAP(al).

If MDLAP(al) is a suffix of QAP(aq) – aq is considered to be
an occurrence of al.

Now, can apply existing usage-based attribute matching
techniques.

Usage-based Conflict Resolution cont'd

● System: modular implementation of each feature
 (MSR, AC, AG, UCR)

● Dataset: bookstore schema (modified TPC-W)

● Query Logs: modified TPC-W queries.

● Measures: precision, recall.

U-MAP Evaluation - Setup

● Best – when all features are
“on”

● Disabling AG and UCR
drastically reduces precision.

● Generally – each feature adds
some benefit to system.

U-MAP Evaluation - Experiments

Consider a large scale database (35 tables, 273 attributes,
73 query templates)

Issues addressed by U-MAP are likely to occur in reality:
➢ Aggressive Chase – 106 possible opposing/reverse references, 3

are interesting
➢ Conflict Resolution – 1267 conflicting attributes.

U-MAP Evaluation – Life Science Scenario

● U-MAP system is based on a classical RIC-approach.

● U-MAP addresses three shortcomings of RIC-approach:
➢ Overlapping sibling relations
➢ Meaningful “reverse” references
➢ Conflicting attribute correspondences

● Precision and recall for fully implemented U-MAP is at least
as good as for RIC-approach.

Conclusion

● More than two overlapping sibling relations?

● Experiments:
➢ Only one dataset used for experiments
➢ “Artificial” dataset
➢ Comparison with other techniques (i.e. semantic)?

● Query Logs:
➢ May be unavailable
➢ Optimal size?
➢ Pre-process (i.e. annotate in some manner)?

Critique & Discussion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

