
Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler
Yahoo!

Sunnyvale, California USA
{Shv, Hairong, SRadia, Chansler}@Yahoo-Inc.com

Presenter: Alex Hu

}  Introduction
}  Architecture
}  File I/O Operations and Replica Management
}  Practice at YAHOO!
}  Future Work
}  Critiques and Discussion

}  What is Hadoop?
◦  Provide a distributed file system and a framework
◦  Analysis and transformation of very large data set
◦  MapReduce

}  What is Hadoop Distributed File System
(HDFS) ?
◦  File system component of Hadoop
◦  Store metadata on a dedicated server NameNode
◦  Store application data on other servers DataNode
◦  TCP-based protocols
◦  Replication for reliability
◦  Multiply data transfer bandwidth for durability

}  NameNode
}  DataNodes
}  HDFS Client
}  Image Journal
}  CheckpointNode
}  BackupNode
}  Upgrade, File System Snapshots

}  Maintain The HDFS namespace, a hierarchy of
files and directories represented by inodes

}  Maintain the mapping of file blocks to
DataNodes
◦  Read: ask NameNode for the location
◦  Write: ask NameNode to nominate DataNodes

}  Image and Journal
}  Checkpoint: native files store persistent

record of images (no location)

}  Two files to represent a block replica on DN
◦  The data itself – length flexible
◦  Checksums and generation stamp

}  Handshake when connect to the NameNode
◦  Verify namespace ID and software version
◦  New DN can get one namespace ID when join

}  Register with NameNode
◦  Storage ID is assigned and never changes
◦  Storage ID is a unique internal identifier

}  Block report: identify block replicas
◦  Block ID, the generation stamp, and the length
◦  Send first when register and then send per hour

}  Heartbeats: message to indicate availability
◦  Default interval is three seconds
◦  DN is considered “dead” if not received in 10 mins
◦  Contains Information for space allocation and load

balancing
�  Storage capacity
�  Fraction of storage in use
�  Number of data transfers currently in progress
◦  NN replies with instructions to the DN
◦  Keep frequent. Scalability

}  A code library exports HDFS interface
}  Read a file
◦  Ask for a list of DN host replicas of the blocks
◦  Contact a DN directly and request transfer

}  Write a file
◦  Ask NN to choose DNs to host replicas of the first block

of the file
◦  Organize a pipeline and send the data
◦  Iteration

}  Delete a file and create/delete directory
}  Various APIs
◦  Schedule tasks to where the data are located
◦  Set replication factor (number of replicas)

}  Image: metadata describe organization
◦  Persistent record is called checkpoint
◦  Checkpoint is never changed, and can be replaced

}  Journal: log for persistence changes
◦  Flushed and synched before change is committed

}  Store in multiple places to prevent missing
◦  NN shut down if no place is available

}  Bottleneck: threads wait for flush-and-sync
◦  Solution: batch

}  CheckpointNode is NameNode
}  Runs on different host
}  Create new checkpoint
◦  Download current checkpoint and journal
◦  Merge
◦  Create new and return to NameNode
◦  NameNode truncate the tail of the journal

}  Challenge: large journal makes restart slow
◦  Solution: create a daily checkpoint

}  Recent feature
}  Similar to CheckpointNode
}  Maintain an in memory, up-to-date image
◦  Create checkpoint without downloading

}  Journal store
}  Read-only NameNode
◦  All metadata information except block locations
◦  No modification

}  Minimize damage to data during upgrade
}  Only one can exist
}  NameNode
◦  Merge current checkpoint and journal in memory
◦  Create new checkpoint and journal in a new place
◦  Instruct DataNodes to create a local snapshot

}  DataNode
◦  Create a copy of storage directory
◦  Hard link existing block files

}  NameNode recovers the checkpoint

}  DataNode resotres directory and delete
replicas after snapshot is created

}  The layout version stored on both NN and DN
◦  Identify the data representation formats
◦  Prevent inconsistent format

}  Snapshot creation is all-cluster effort
◦  Prevent data loss

}  File Read and Write
}  Block Placement and Replication management
}  Other features

}  Checksum
◦  Read by the HDFS client to detect any corruption
◦  DataNode store checksum in a separate place
◦  Ship to client when perform HDFS read
◦  Clients verify checksum

}  Choose the closet replica to read
}  Read fail due to
◦  Unavailable DataNode
◦  A replica of the block is no longer hosted
◦  Replica is corrupted

}  Read while writing: ask for the latest length

}  New data can only be appended
}  Single-writer, multiple-reader
}  Lease
◦  Who open a file for writing is granted a lease
◦  Renewed by heartbeats and revoked when closed
◦  Soft limit and hard limit
◦  Many readers are allowed to read

}  Optimized for sequential reads and writes
◦  Can be improved
�  Scribe: provide real-time data streaming
�  Hbase: provide random, real-time access to large tables

hflush •  Unique block ID
•  Perform write operation
•  new change is not
guaranteed to be visible
•  The hflush

}  Not practical to connect all nodes
}  Spread across multiple racks
◦  Communication has to go through multiple switches
◦  Inter-rack and intra-rack
◦  Shorter distance, greater bandwidth

}  NameNode decides the rack of a DataNode
◦  Configure script

}  Improve data reliability, availability and
network bandwidth utilization

}  Minimize write cost
}  Reduce inter-rack and inter-node write
}  Rule1: No Datanode contains more than one

replica of any block
}  Rule2: No rack contains more than two

replicas of the same block, provided there are
sufficient racks on the cluster

}  Detected by NameNode

}  Under-replicated
◦  Priority queue (node with one replica has the highest)
◦  Similar to replication replacement policy

}  Over-replicated
◦  Remove the old replica
◦  Not reduce the number of racks

}  Balancer
◦  Balance disk space usage
◦  Bandwidth consuming control

}  Block Scanner
◦  Verification of the replica
◦  Corrupted replica is not deleted immediately

}  Decommissioning
◦  Include and exclude lists
◦  Re-evaluate lists
◦  Remove decommissioning DataNode only if all blocks on

it are replicated
}  Inter-Cluster Data Copy
◦  DistCp – MapReduce job

}  3500 nodes and 9.8PB of storage available
}  Durability of Data
◦  Uncorrelated node failures
�  Chance of losing a block during one year: <.5%
�  Chance of node fail each month: .8%
◦  Correlated node failures
�  Failure of rack or switch
�  Loss of electrical power

}  Caring for the commons
◦  Permissions – modeled on UNIX
◦  Total space available

DFSIO benchmark
}  DFSIO Read: 66MB/s per node
}  DFISO Write: 40MB/s per node

Production cluster
}  Busy Cluster Read: 1.02MB/s per node
}  Busy Cluster Write: 1.09MB/s per node

Sort benchmark

Operation Benchmark

}  Automated failover solution
◦  Zookeeper

}  Scalability
◦  Multiple namespaces to share physical storage
◦  Advantage
�  Isolate namespaces
�  Improve overall availability
�  Generalizes the block storage abstraction
◦  Drawback
�  Cost of management
◦  Job-centric namespaces rather than cluster centric

}  Pros
◦  Architecture: NameNode, DataNode, and powerful features to provide kinds of

operations, detect corrupted replica, balance disk space usage and provide
consistency.

◦  HDFS is easy to use: users don’t have to worry about different servers. It can be used
as local file system to provide various operations

◦  Benchmarks are sufficient. They use real data with large number of nodes and
storage to provide kinds of experiments.

}  Cons
◦  Fault—tolerance is not very sophisticated. All the recoveries introduced are based on

the assumption that NameNode is alive. No proper solution currently in this paper
handles the failure of NameNode

◦  Scalability, especially the handling of replying heartbeats with instructions. If there
are too many messages come in, the performance of NameNode is not proper
measured in this paper

◦  The test of correlated failure is not provided. We can’t get any information of the
performance of HDFS after correlated failure is encountered.

}  Thank you very much

