massively distributed computation

‘:T:‘ —u: | _ L& _) m a '3
e F > = ; RLOC
Nian Ke
David R . Cher
University of Wa
Advanced parti g techniques for

Outline

= Background
= MapReduce Model
= SCOPE Language and Cosmos system
= Advanced partitioning techniques
= Partial Partitioning
* Hash-Based Partitioning
* Range-Based Partitioning
= Indexed-based Partitioning
= Critiques and Discussion

UNIVERSITY OF

WATERLOO

- MapReduce Model
- SCOPE Language and Cosmos system

MapReduce Model

User
Program
1) fork .* " : :,
(n or'. — 1) fork
2).- assign
.asg‘gn reduce , .
g

split 0

split 1

split 2

(6) write Ol.ltpl.lt
file O

w
(5) remote read orker

split 3

3) read (4) local write
worker

split 4

Input
files

| output
~ file 1

Map Intermed

1ate files Reduce Output

phase o (on local disks)) phase files

I Map Task 1 | I Map Task 2 I I Map Task 3 I
| I L '
| I L '
| I L '
| I L '
| I L '
| I L '
I klw klw k2w klw | I k3w kdow kdw kdw |l I kd v klw k3w |
| I L '

Partitioning Function Partitioning Funetion Partitioning Function

______ —_ = = = — = = == = = = 4

Sort and Group
k2w kd v k5w

Sort and Group

klwvwvv [kK3vy

= Expertise are required to " n N

translate the application logic & € f,
. a e
to MapReduce model in order @\ *, ¢

to achieve parallelism. ~o 4
= Code can be hard to debugand ¢* -
almost impossible to be reused.
= Complex application can
become cumbersome to
implement.
= Optimization of MapReduce
jobs could be difficult.

po - I
2

-

SCOPE (Structured Computation Optimized for Parallel

l.xecution) Language and Cosmos
System

Rl = SELECT A+C AS ac, B.Trim() AS Bl

select R.c, 8.d, count(x) FROM R

from R, S WHERE StringOccurs (C, “xyz”) > 2
where R.a = S.a and R.b = 8.k and pl(R) and p2(8)

grcup by R.c, S.d #CS

public static
int StringOccurs(string str, string ptrn)

{

int c¢cnt=0; int pos=-1;

SCOPE Script while (pos+l < str.Length) {

i pos = str.IndexOf (ptrn, pos+l) ;
if (pos < 0) break;

cnt++;
[FrontEnd Services] }
return cnt;
}
#ENDCS

—
[o e o e ©

£ WHERE Col-1 > 10

SCOPE]
Optimizer

SCOPE
Run/T

D RSN N —

e "'—*“ SRS
S ERLE UNIVERSITY OF

) - o\ '\\
1 S :
L3 = ol - - 1 . - ._
. - v T " - - A S a | < K. . ~
= f ; _ !
TS A 4 ‘ i] gl
7:_.._.1.'_——1._-— -_'_¢‘_‘_+) - - . . - :
o] it reill (e o A = ; 2298
- P T .
i iy

- Partial Partitioning
Hash-Based Partitioning

Range-Based Partitioning
- Indexed-based Partitioning

Partial Partitioning

= Even after query optimization, certain repartitions are still

inevitable.

= However by carefully define the partition scheme, we could
use partial repartitioning to replace full repartitioning.

= Partial partitioning could greatly reduce 1/O, communication
and memory burden while relieve the scheduler and
decrease response time

SELECT a, UDAgg(b) AS aggB If the input has already been hash partitioned by 3,

FROM SSTREAM "input.ss" a great deal of resources would be saved
GROUP BY a;
OUTPUT TO SSTREAM "output.ss" "/;u—t—u;\\
[HASH | RANGE] CLUSTERED BY a; P @ N
/ (output.txt) \‘
__ % SV3
- -~ \ 7

Output
(output.txt)

epartition
(a,50)

Stream Agg
({a}, UDAgg(b))

Stream Agg
(fa}, UDAgg(b))

sv2 / | ;

AN Repartition 2 Ay //
GD Repartition ~(
g ’ N (a,200) S

7/ ’
o SV1 \} ,/ SV1\\
\ _ / \ Get)
N (input.ss) // \ . p

- N (input.ss) P

—_—— e -
il PSS

\ \\
\

Hash-Based Partial Partitioning

Example 1 Suppose that pi = 4 and po = 2 (i.e., we want
to partition 2-ways an input that is already 4-way parti-
tioned). Every row in Py satisfies h(C') =0 mod 4, where h
is the hash function and C' are the partitioning columns. Fig-
ure 5(a) shows the default partitioning strategy which con-
nects every input vertex with every output vertex. In this
case, we know that h(C) = 0 mod 2 as well, and therefore
Py would never generate a row satisfying h(C') =1 mod 2.
Thus, My does not need to read the empty local partition
produced by Py. In general, Mo only reads from Py and Ps,
and My from Py and P3. Figure 5(b) shows the refined merge
graph. A similar strategy can be applied when pi = 2 and
po = 4. Figure 5(c) shows the refined partitioning graph.

AV 94
ofolcIoRCICICIONNC R

(a) Full Partitioning (b) Partial Merge (c) Partial Partitioning

Y\

= Range-Based Partial
Partitioning could be
used when input and
output partition
scheme share common
prefix.

= Determine the
partition boundary is
important because itis
crucial to reduce
latency.

P1=((1,A)...(1,C))

P>=[(1,C)...(2,E))

P3=[(2,E)...max)

1A LAY
1,A LA
18 \ 18
1,B 1'B
e / Bt
1,D 1D

2,A \ 2,A :
2,0 12D
2F / _2E
3,B \ 38

4,A 4A

| Pi=n2)

P'2=[2...3)

P’3=[3...max)

Range-Based Partial Partitioning

Algorithm 1: PartitionBoundaries(C, T, B)

Input: Columns C, Partition size T, Buckets B
Output: Partition boundaries P

/* Assume that C and B.cols share common prefix CP
and for each 1 < i <|B|: B[i-1].hi = B[i].lo =*/
/* Output is partitioned by CP, which implies C,
and each partition size is around T */
CB = U; [II¢pB[il.lo, IlgpBl[il.hi) // project B on CP
idx = 0;
while idx < |CB| do
actLo = CB[idx].Lo;
actSize = CB[idx].Size;
idx++;
while actLo = CB[idx].Lo OR
CB[idx] .size / 2 < T - actSize do
actSize += CB[idx].size;
idx++;
end
P = P U [actLo, CB[idx-1].hi);
end

return P;

Range-Based Partial Partitioning :

_\»

= Boundary decision
could not only be
made at compile time
but also running time.

= Although extra cost is
needed, it could avoid
skewed partition in
certain cases which
would lead to high
latency

The StatCollector intercept the input and

compute a histogram on the partitioning

columns . Then the Coordinator compute

a overall histogram and decide the overall
partition boundaries.

Repartition
(@)

Coordinator

\ \
° - - \\ f“
Integrating the Techniques into -

\ ¢
\
!

SCOPE Optimizer

= Optimizer would eliminate certain repartition
when certain functional dependency is
detected between input partition scheme and
potential output partition scheme.

= Optimizer chooses to repartition data based
on requirements of subsequent operators.

= Optimizer would consider partial repartition
if certain structural properties are detected.
Compromise may also occur.

SCOPE Optimizer and
SUr

uctured Streams

SELECT GetDomain(URL) AS Domain,

SUM({(MyNewScoreFunction(A, B, ...)) AS TotalScore
FROM Web-Table
GROUP BY Domain;

SELECT TOP 100 Domain ORDER EY TotalScore;

Top 100
Top 100 Top 100 Top 100
Sort | - [Sort | - [Sort (Top100)(Top100)
Super Full Agg Full Agg Full (Sort] (Sort
Expensive [Full Agg)(Full Agg) (Partial Agg] (Partial Agg)
(Fartiti on Partition Partition Partition (Table Scan) (Table Scan) (Tahle ScanJ (Table Scan)
é i % ?50 b éﬁ
Structured Datasets (Sstream)

(partitioned by URL, sorted by URL)

Unstructured Datasets Much more efficient w/o s{wﬁﬁng data

Opportunities

lor optimizing

N-ary operators

= Pushing partition scheme from one input to
others: when inputs are partitioned in
compatible way this method might be better.

= Heuristic Range partition: Obtaining a overall
nistogram buckets and generate boundary
pased on the overall statistics.

= Broadcast optimization: Based common

prefix, partition t
each partition of
partitions of sma

ne smaller input and for
arge inputs, send all

ler input to it.

lExperimental Results

SELECT domain, host, Agg(coll), ..., Agg(coln)
FROM SSTREAM "WebPages.ss"
GROUP BY domain, host

Domain Host Top-level-directory | URL-suffix Data
com.microsoft | www download/ en/default.aspx?WT.mc_1id=MSCON_HP_US_Nav_Downloads
com.microsoft | windows | products/ home

com.bing WWW videos/ browse?FORM=Z9LH6

Table 1: Sample Information for a Web-pages Structured Stream

400 40000 0%
rﬁm
300 30000

2 %

£ g g

Ezﬂu 20000 =
E E ;"’"
100 10000 3 0%
£ 1om
ol oL I "

Partial Repartitioning Full Repartitioning |Partial Repartitioning Full Repartitioning

(a) Latency (b) Total Work (c) Data Write and Data Read

Experiment Rest

11ts

= The data is ranged-
partitioned and sorted
by {domain, host, top-
evel-directory}

= T1,T2,T3,T4,come from
different period of
time and different
domain.

Time Units

SELECT domain, host, Agg(coli), ..., Agg(coln)
FROM (

SELECT *= FROM Ti UNION ALL

SELECT = FROM T2 UNION ALL

SELECT *= FROM T3 UNION ALL

SELECT *= FROM T4

)

GROUP BY domain, host

500

400

w
[=]
[=]

]
(=]
(=]

Partial Repartitioning/No
Boundary Merge

Partial Repartitioning Full Repartitioning

(a) Latency

Experimental Rest

10000
100.00%
oo
£
7500 5
2 75.00%
£
“w
[
£ g
o 5000 2 50.00%
E e
- s
2500 5 2s.00%
1=
L
0 0.00% -
Partial Repartitioning Full Repartitioning Partial Repartitioning/No Partial Repartitioning Part'ame"am::g;:" No Boundary

Boundary Merge

(b) Total Work (¢) Total Data I/O

Indexed-based Partitioning

= |n the situation of

terabytes of data, even N
the local repartition
would be quite expensive _—
= We could compute a (a) Traditional partitioning.
value pa(index number) N
utilize a stable sort to

virtually “partition” the ol gt
. table Sort(pa)
input data. e

Computle pa=p(a)

(b) Indexed partitioning.

Normalized Average Latency

per Partition Vertex

2.5

0.5

=@==(riginal Repartition

-@==|ndexed-based Repartition

250 500 1000
Number of Partitions

2000

4000

UNIVERSITY OF

WATERLOO

Critique and discussion

= The paper did not provide detailed example
and description for optimization
opportunities for the N-ary operator.

= Due to commercial reason, the paper only
provides relative measurements for the
experiment results.

= Network environment for the experiments is
not mentioned.

Critique and discussion

= No example and experimental results were
given for expensive N-ary operation like join.

= All of these advanced partitioning techniques
and even the whole optimizer rely heavily on
structural properties of the input stream.

